Tokenization and
Tokenizer-Free LMs

CSE 5539: Advanced Topics in Natural Language
Processing

https://shocheen.github.io/courses/advanced-nlp-fall-2024

Logistics
e Mid-term report: due tonight

e Quiz also due tonight - just 3 multiple choice questions.

— .
;’?}; Cody Blakeney
3y de st

Do you guys ever think about tokenizers?

A% Prithviraj (Raj) Ammanabrolu @rajamn e
If there's one thing standing in the way of AGl, it's tokemzers

DAYS WITHOUT

TOKENIZATION
ACCIDENTS

Tokenization is at the heart of much weirdness of LLMs. Do not brush it off.

» Why can't LLM spell words? Tokenization.

» Why can't LLM do super simple string processing tasks like reversing a string? Tokenization.
« Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.

e Why is LLM bad at simple arithmetic? Tokenization.

» Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.
» Why did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.
« What is this weird warning | get about a "trailing whitespace"? Tokenization.

» Why the LLM break if | ask it about "SolidGoldMagikarp"? Tokenization.

» Why should | prefer to use YAML over JSON with LLMs? Tokenization.

e Why is LLM not actually end-to-end language modeling? Tokenization.

e What is the real root of suffering? Tokenization.

[Let's build the GPT Tokenizer’ by Andrej Karpathy]

https://youtu.be/zduSFxRajkE?feature=shared

Agenda

|. Prior and current tokenization practices and their issues
. Word-level tokenization
[l. BPE, WordPiece, Unigram

ll. Tokenization-free language models

|. Byte-level models
[l. Fixed-length patching: Charformer, Canine et al.

[1l. Dynamic Patching: Learnable tokenization

[1l. A brief look at “tokenization” in other modalities.

What's tokenization

Recall: A language model is a probability distribution over a sequence of
“tokens”; each token is from a “vocabulary”.

What is a token: “basic unit that need not be decomposed for further

processing” — traditionally defined as a word
[Webster and Kit, 1992]

Tokenization: Splitting or segmenting a “string” of text into a sequence of tokens

“I love watching the television”

X = (I, love, watching, the, television)

https://aclanthology.org/C92-4173/

Why do we need to tokenize?

e Tokenization is not a typical preprocessing step in most machine
learning domains

e Neural networks work with real-valued numbers. Most machine
learning deals with continuous data but text is discrete

e Text needs to be converted to a form that a model can
consume/generate.

Set of all tokens form a vocabulary

e Given a tokenization algorithm
o Tokenize a corpus of text
o Collect all unique tokens (aka types) 2 vocabulary

e The role of vocabulary in a language model
o The vocabulary and its size is part of the model architecture
o It defines the size of the input embedding table and final output layer
m large vocabulary = more parameters

A simple tokenizer: Split by whitespace?

“I love watching the television”

X = (I, love, watching, the, television)
« Tokenization is not simple, and tokenizers require many specialized rules
« Such as, what will we do with the following strings:
- “amazing!”’, “state-of-the-art”, “unthinkable”, “prize-winning”, “aren’t”, “O’Neill"

- Some languages don't even use spaces to mark word boundaries!

AIBAREZHMRLTOET Cekoslovakyalilastiramadiklarimizdanmigsiniz

. You are one of those whom we could not turn into a
| am studying Japanese. :
Czechoslovakian.

What about a word level tokenizer?

e Define each token as a word or a punctuation:

o What is a word: smallest unit of language that carries meaning and can stand
alone or combine with other units to create more complex meanings

e How to split into words?
o For languages like English:
m Could be simple regexes: split on all spaces and punctuation
e What about “The value of pi =3.14", “the IP address is 0.0.0.0"
e What about “He got cold feet” - should cold feet be one or two words?
o For languages like Chinese:
s BEHRIES A (| love Natural Language Processing)
m Need specialized tools (e.g. jieba)

Some related terminology

¢ A morpheme is the smallest meaning-bearing unit of a language

o ‘“unlikeliest” has the morphemes {un-, likely, -est}
¢ Morphology is the study of the way words are built up from morphemes

¢ Word forms are the variations of a word that express different grammatical categories
o Tense (when something happened; past, present, future)
o Case (inflecting nouns/pronoun and their modifiers to express their relationship with other
words; English has largely lost its inflected case system)
o Number (singular/plural)

o Gender (masculine, feminine, neuter; not extensively used in English)

and thus help convey the specific meaning and function of the word in a sentence

11

Word level tokenizer - How to define a vocabulary?

e Given a tokenization algorithm
o Tokenize a corpus of text
o Collect all unique tokens - vocabulary

e For a English corpus, a corpus like OpenWebText can have TM+ unique

words
o Vocabulary becomes too large

e A popular solution: Cut this list to include only K tokens.
o How to chose K - based on frequency
o What to do with the rest? - replace with an UNK “unknown” token
o Word level tokenizers lead to “closed” vocabulary models.

Handling Unknown Words

« What happens when we encounter a word that we have never seen in our
training data?

- Not much we can do
- Except assigning to it a special <UNK> token

- Why this is bad?

13

Limitations of <UNK>

e Generally, we lose most of the information the word conveys. UNKs
don't give features for novel words that are useful anchors of

meaning

+ What if you want to generate a word which is not in the vocabulary? Imagine ChatGPT
generating UNK.

® Especially hurts in [productive] languages with many rare
words/entities

The chapel is sometimes referred to as "Hen Gapel Lligwy" ("hen" being the Welsh word
for "old" and "capel" meaning "chapel").

The chapel is sometimes referred to as " Hen <unk> <unk>" (" hen " being the Welsh word for "
old " and " <unk>" meaning " chapel ").

14

Word Level Tokenization

Other Limitations

« Word-level tokenization
treats different forms of the
same root as completely
separate (e.g., “open”,
“opened”, “opens”,
“opening”, etc)

« This means separate
features or embeddings.

« Why is this a problem?

But deciding what counts as a word in Chinese is complex. For example, consider
the following sentence:

(2.4) SRR SREE

“Yao Ming reaches the finals”

As Chen et al. (2017) point out, this could be treated as 3 words (“Chinese Treebank’
segmentation):

(2.5) kB #HA BT
YaoMing reaches finals

or as 5 words (‘Peking University’ segmentation):

(2.6) &k B #HA B RFE

Yao Ming reaches overall finals

Finally, it is possible in Chinese simply to ignore words altogether and use characters
as the basic elements, treating the sentence as a series of 7 characters:

@n %8| #t A B &R 3

Yao Ming enter enter overall decision game
In fact, for most Chinese NLP tasks it turns out to work better to take characters
rather than words as input, since characters are at a reasonable semantic level for

most applications, and since most word standards, by contrast, result in a huge vo-
cabulary with large numbers of very rare words (Li et al., 2019).

15

A simpler tokenizer: Character-level

| love watching the television

<I_love_watching_the_television>

Issues
® Make sequences very long

® Word-level models provide an inductive bias to models. BUT character-level models must learn to
compose characters into words.

O Need deeper models

[Jurafsky and Martin Sec 2.4 p17] 16

https://web.stanford.edu/~jurafsky/slp3/2.pdf

Current standard: Subword Tokenization

“Word"-level: issues with unknown words and
information sharing, and gets complex fast

- Also, fits poorly to some languages
Character-level: long sequences, the model needs
to do a lot of heavy lifting in representing that is
encoded in plain-sight
Let's find a middle ground!

Subword tokenization first developed for
machine translations

- Based on byte pair encoding (Gage, 1994)

Now, used everywhere

Neural Machine Translation of Rare Words with Subword Units

Rico Sennrich and Barry Haddow and Alexandra Birch
School of Informatics, University of Edinburgh
{rico.sennrich,a.birch}@ed.ac.uk, bhaddow@inf.ed.ac.uk

The main motivation behind this
paper is that the translation of
some words is transparent in that
they are translatable by a
competent translator even if they
are novel to him or her, based on a
translation of known subword units
such as morphemes or phonemes.

17

mailto:bhaddow@inf.ed.ac.uk

A redefinition of the notion of tokenization

Due to:

o Scientific results: The impact of sub-word segmentation on machine translation performance in
2016

o Technical requirements: A fixed-size vocabulary for neural language models & a reasonable
vocabulary size

..in current NLP, the notion of token and tokenization changed

“Tokenization” is now the task of segmenting a sentence into non-typographically (&
non-linguistically) motivated units, which are often smaller than classical tokens, and
therefore often called sub-words

Typographic units (the “old” tokens) are now often called “pre-tokens”, and what used to
be called “tokenization” is therefore called nowadays “pre-tokenization”

O https://github.com/hugqgingface/tokenizers/tree/main/tokenizers/src/pre_tokenizers 18
[Mielke et al., 2021]

https://github.com/huggingface/tokenizers/tree/main/tokenizers/src/pre_tokenizers
https://arxiv.org/abs/2112.10508

Byte-Pair-Encoding (BPE)
coined by Gage et al., 1994; adapted to the task of word segmentation b
(2019) for more]

Sennrich et al., 2016; see Gallé

Main idea: Use our data to automatically tell us what the tokens should be

Token learner:
Raw train corpus = Vocabulary (a set of tokens)

Token segmenter:
Raw sentences = Tokens in the vocabulary

[Jurafsky & Martin (2023)]

19

https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/P16-1162/
https://aclanthology.org/D19-1141/
https://aclanthology.org/D19-1141/
https://web.stanford.edu/~jurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) - Token learner

coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé

(2019) for more]

Raw train corpus = Vocabulary (a set of tokens)

e Pre-tokenize the corpus in words & append a special end-of-word symbol _ to each
word

e Initialize vocabulary with the set of all individual characters
e Choose 2 tokens that are most frequently adjacent (“A”, “B")

o Respect word boundaries: Run the algorithm inside words
e Adda new merged symbol (“AB”) to the vocabulary

e Change the occurrence of the 2 selected tokens with the new merged token in the
corpus

e Continues doing this until k merges are done

All k new symbols and initial characters are the final vocabulary
What's k? Open research question, see Mielke et al., 2021 Sec 6.6; 30K is seen frequently

[Jurafsky & Martin (2023)]

20

https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/P16-1162/
https://aclanthology.org/D19-1141/
https://aclanthology.org/D19-1141/
https://arxiv.org/abs/2112.10508
https://web.stanford.edu/~jurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) - Token learner Example

corpus
5 1
2 1
6 n
3 W
2 n

word occurrence
count in the corpus

H-®® O O
= Qs 5 =

e

SmbO\
ond-of-word vocabulary
_ _,d, e, 1, 1, n, o, r, s, t, w
e st _
er _
er _

N

each word is split into characters

[Example from Jurafsky & Martin (2023), pages 18—-19]

21

https://web.stanford.edu/~jurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) - Token learner Example

¢ Counts all pairs of adjacent symbols
¢ The most frequent is the pair e r [a total of 9 occurrences]
¢ Merge these symbols, treating er as one symbol, & add the new symbol to the vocabulary

corpus vocabulary \

5 1l owl _ _,d,e,i,l,n,o,r,s,t,w,
2 l owle st _

6 newerj_

3 wider)_

2 new_

[Example from Jurafsky & Martin (2023), pages 18- 22

107

https://web.stanford.edu/~jurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) - Token learner Example

¢ Counts all pairs of adjacent symbols
¢ The most frequent is the pair er _
¢ Merge these symbols, treating er_ as one symbol, & add the new symbol to the vocabulary

corpus vocabulary \
5 1l owl_ _,d,e,i,l,n,o,r,s,t,w,er,
2 l owle st _

6 newler_

3 wid

2 new._

[Example from Jurafsky & Martin (2023), pages 18- 23

107

https://web.stanford.edu/~jurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) - Token learner Example

¢ Counts all pairs of adjacent symbols

¢ The most frequent is the pair n e

¢ Merge these symbols, treating ne as one symbol, & add the new symbol to the vocabulary

corpu

ne

——

p—y

(\SRRVS I @ W \S RNV |

llow _
l*‘owe st _

W er__

wilder_

ne

—

[Example from Jurafsky & Martin (2023), pages 18—19]

W

vocabulary

,d,e,1,1,n,0, 1, s, t,w, er, er,

24

https://web.stanford.edu/~jurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) - Token learner Example

merge
(ne, w)
(1, o)
(lo, w)
(new, er_)
(low, _)

current vocabulary

—,d,e,1i,1,n,0, 1, s, t,w, er, er__, ne, new

—,d,e,1,1,n,0, 1, s, t,w, er, er__, ne, new, 1o
—,d,e,i,1,n,0, 1, s, t,w, er, er_, ne, new, 1o, low
_,d,e,i,1,n,0,r,s,t,w, er, er__, ne, new, 1o, low, newer__

_,d,e,1,1,n,0, 1, S, t,w, er, er__, ne, new, 1o, low, newer__, low__

Final vocabulary

[Example from Jurafsky & Martin (2023), pages 18—19]

25

https://web.stanford.edu/~jurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) - Token segmenter

coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé
(2019) for more]
e The token segmenter is used to tokenize a test sentence

o Just runs on the test data the merges we've learned from the training data, greedily, in the order we
learned them

e First, we segment each test sentence word into characters

e Then, we apply the first merge rule
e E.g., replace every instance of e r in the test corpus with er

e Then the second merge rule
e E.g., replace every instance of er _ in the test corpus with er_

e And so on

[Example from Jurafsky & Martin (2023), pages 18—19]

26

https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/P16-1162/
https://aclanthology.org/D19-1141/
https://aclanthology.org/D19-1141/
https://web.stanford.edu/~jurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) - Token segmenter

coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé
(2019) for more]

e Test example: slow_ > slow_—>slow_->slow_

e Test example: now > now

BPE can tokenize a word never seen at training time.
Leads to an open vocabulary model*

Can often learn morphological segmentations
Deescalation > De escalat ion

[Example from Jurafsky & Martin (2023), pages 18—19]

27

https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/P16-1162/
https://aclanthology.org/D19-1141/
https://aclanthology.org/D19-1141/
https://web.stanford.edu/~jurafsky/slp3/2.pdf

A variant of BPE: WordPiece

used in BERT and some follow ups

e Training algorithm: Same as BPE

e Tokenization algorithm: greedily pick the longest prefix that exists
in the vocabulary (and repeat)

o Slow_ = slow_ [stop]

BPE/Wordpiece summary

e Start with a character vocabulary

e Merge frequent bigrams

e Repeat until a desired vocab size/merge size is reached.

Unigram LM Tokenizer

1. Start with a large base vocabulary, remove tokens until a desired size is
reached.

1. How to construct a base vocabulary: all substrings of pre-tokenized
words OR start with a large BPE vocabulary.

1. How to remove tokens:
a. Compute the unigram LM loss over the corpus (more details later)
b. Removing tokens increases this loss.
c. Select and remove tokens that increase it the least.
d. Repeat

Base Vocabulary

e The corpus:

("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

e Initial Vocabulary (all strict substrings)
("h",15) ("u", 36) ("g", 20) ("hu",15) ("ug", 20) ("p",17) ("pu",17) ("n", 16)
("un",16) ("b", 4) ("bu", 4) ("s", 5) ("hug", 15) ("gs", 5) ("ugs", 5)

Unigram LM loss

e Unigram LM loss = negative log probability of the corpus.

e Probability of a corpus = product of marginal probability of
individual words

P(pug hugs bugs) = p(pug) x p(hugs) x p (bugs)

Probability of a word

e product of marginal probability of its subwords (based on
frequency)

p(pug) = p(“p”) x p(“u”) x p(*g”)
Or, p(pug) = p(“pu”) x p(“g”)
Or, p(pug) = p(“p") x p(“ug”)

Choose highest of all possible splits (why?)

e How to this efficiently: Dynamic programming (Viterbi algorithm)

Unigram Tokenization Algorithm

1. Start with a base vocabulary

1. Compute the unigram loss, L, over the corpus

VERY SLOW!
1. For every token, w, in the vocabulary
a. Remove w from the vocabulary and recompute the loss, L'(w)
b. Define score(w)=1L'(w)-L

1. Compute w* = min_w score(w).
a. Remove w* from the vocabulary.
b. Got to step 2. Repeat until a desired vocabulary size is reached.

Unigram Tokenization Algorithm (Slightly Faster)

1. Start with a base vocabulary

1. Compute the unigram loss, L

1. For every token, w, in the vocabulary
a. Remove w from the vocabulary and recompute the loss, L'(w)
b. Define score(w)=1L'(w)-L

1. Compute W = x% of tokens with the lowest score.
a. Remove W from the vocabulary.
b. Go to step 2.

How to tokenize once the vocabulary is decided

e Viterbi again —tokenization which maximizes the unigram probability of the

word
o (orfind top k tokenizations)

e “Unhug” (Foreach position, the subwords with the best scores ending in that position:)
Character O (u): "u" (score 0.171429)
Character 1 (n): "un" (score 0.076191)
Character 2 (h): "un" "h" (score 0.005442)
Character 3 (u): "un" "hu" (score 0.005442)
Character 4 (g): "un" "hug" (score 0.005442) [final tokenization]

Unigram vs BPE

1. Why unigram over BPE and WordPiece?
a. Unigram finds optimal coding length of a sequence (according to Shannon'’s
entropy).
b. Unigram allows sampling multiple tokenizations for every word - subword
regularization — robustness

1. Why is Unigram tokenization not more popular?
a. In many papers simply referred to as SentencePiece, which is actually not a
tokenizer but a library wrapping several tokenizers
b. Does the actual subword tokenizer matter as we scale up models?

Subword methods are not TRULY open-vocabulary

e What if you encounter a character not seen at training time?

e For example, a BPE model trained on only English encounters a
Chinese character at test time --- it gets assigned UNK

e How to solve this issue?

o Train on a mix of all characters? Accounting for all languages, they are millions of
characters — vocabulary size would be too large

Solution: Byte-level subword Models (BBPE)

e Every written language is represented in Unicode

Unicode is a text encoding standard designed to support the use of
text in all of the world's writing systems that can be digitized. It has
multiple versions like UTF-8, UTF-16, UTF-32. UTF-8 is the most
common one.

e Each character is a sequence of “bytes”.

o Each byte is 8-bit. Total 256 unique byte values
o Each character requires between 1to 4 bytes.

=f.

Al Q@I
00000041 000003A9 | 00008A9E 00010384
Al @ [
41 CE|A9 E8|AA|9E F0190|8E|84

UTE-32

UTF-8

Solution: Treat a corpus as a sequence of byte. Start the vocabulary with all bytes (256) and train a BPE

model. TRULY Open Vocabulary. Works for all characters!*

Subword Models -- Summary

e Split text in tokens learned statistically from the training corpus
e Makes the model open vocabulary

e Subword methods prove to be an effective method of
“compressing text”

Issues with subword models

BERT thinks the sentiment of M
"superbizarre" is positive because T
its tokenization contains the
token "superb"

RERE . [superb][:##iza][##rre J

""""" superbizarreJ[neg

applausive pos
—__—_/___———

(a) BERT (sw)

[Hofmann et al., 2021]

41

https://aclanthology.org/2021.acl-long.279/

Non-concatenative Languages

S ktb “write” (root form)
.._j,i:"f kataba “he wrote”
s_j,f:":(kattaba “he made (someone) write”

LAY
LA
°

o) iktataba “he signed up”

Table 1: Non-concatenative morphology in Arabic.*
The root contains only consonants; when conjugat-
ing, vowels, and sometimes consonants, are interleaved
with the root. The root is not separable from its inflec-
tion via any contiguous split.

Subword Tokenization and “noise”

e He fell and broke his coccix (vs coccyx)
e Neighbor =1token, neighbour = two tokens

e John Smith = 2 tokens, Srinivas Ramanujam = ??

Subword Tokenization and “numbers”

e Why are LMs bad at basic arithmetic?

o 3.4 istokenized as 3.14
o 3.]15istokenizedas3.15

Natural phenomena like diacritics or a little easily human-readable noise lead to
unexpected BPE sequences and catastrophic translation failure

Arabic—English

sTC daadll Al sl Ul g dgais Ul

diacritics 1.0 Al (A hdal Ul « G U

ref I’m Canadian, and I’'m the youngest of seven kids.

inyis [e | f [s s s bt [6 [T s -] fosd s ff]
OUtyis I’'m a Canadian, and I’m the youngest of my seven sisters.

COMET 0.764

Ngext AT TRV S ISR SR NS I H S ST SCRC G N
OUtiext We grew up as a teacher, and we gave me a hug.

COMET -1.387

[Salesky et al., 2021]

https://aclanthology.org/2021.emnlp-main.576/

Sequence Lengths, Costs, and Performance

uelaql|

ueidioan)
ngnja |
el
I|eBuag
NEEI
liegeuena(]
o~ M3IGRH
eyl
Jlqedy
211144

Language Script

|nSuey

osouedef

uizer]

o
S
—
Su2y0] JO Jaquinu S5eIany

300
200

uesaqi] 1)
uei8ioar) dQ:
n3ni2) ‘Yq)
llwe] ‘Yq)
IleSuag ._.wv
IleSuag m__v
%%: ‘31)

d1qeay ‘J|)
MIGeH ‘YY)
HA ‘31)
u_n_e,q 'VV)

Language Family and Script

(
(
(
(
(
(
(
(
(ueSeuensq ‘g|)°
(
(
(>
(
(ur
(ut
(ul
(

une u_v

N cO = -
—

Ysi|Sug 03 aAIIB|a4 350D

o uelaql]

Language Script

LLM APIs charge per token

300
200
100

Sequence Lengths, Costs, and Performance

suayo1 §o Jaquinu aSessny

Sequence Lengths, Costs, and Performance

—— pt

—+— SW —— vi
—#— ja == 05 ——
== fr —=— ru

—+— ko —¥— en

—— te —%— am

0 1 2 3
Number of in-context examples

(a) XLSUM

30

10

‘/i
e s
-\l x. >
a1 :>-< /
x\x/x n +
- x
7 -
' $ +
*/ —— pt —— ar —+— ta
.><A\ —— it —+— de —— 10
—a—: | —&— ka ——=
o v—-y —— pl —e— id —+— es
01 2 3 5 8 10

Number of in-context examples

(b) XFACT

30

\

il

—
i ¥ I%%
1 a *
[0 ’ &
220{
o @
—— ta = —— es
—#— am -t fr ——
—=— hi —=— ko +— en
x == ar —=— 1e == 'id
==t —— SW —— vi
10 :
0 1 2 3)

Number of in-context examples

(c) CROSS-SUM

Tokenization is at the heart of much weirdness of LLMs. Do not brush it off.

» Why can't LLM spell words? Tokenization.

» Why can't LLM do super simple string processing tasks like reversing a string? Tokenization.

« Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.

e Why is LLM bad at simple arithmetic? Tokenization.

» Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.
» Why did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.
« What is this weird warning | get about a "trailing whitespace"? Tokenization.

» Why the LLM break if | ask it about "SolidGoldMagikarp"? Tokenization.

» Why should | prefer to use YAML over JSON with LLMs? Tokenization.

e Why is LLM not actually end-to-end language modeling? Tokenization.

e What is the real root of suffering? Tokenization.

[Let's build the GPT Tokenizer’ by Andrej Karpathy]

49

https://youtu.be/zduSFxRajkE?feature=shared

Recent tweaks to subword tokenizers

e Tokenize each digit separately (i.e. no merge on digits)

e Add special tokens to deal with everything else:
o E.g.special tokens for keywords from programming languages

e Train the tokenizer on a more balanced dataset.
o Apply tricks like alpha-sampling — up sample lower resource languages and
scripts to up their frequency.
o Does not solve all issues but helps.

Tokenizer-free Models

Goal: Eliminate the need to have a separately trained tokenizer.

Character/Byte-level Language Models

e Return of the character: Directly model characters or bytes

e How to deal with the inefficiencies?
o Modify the model architecture

Why character/byte level models

e No linguistic inductive bias, let the model figure out how it needs to

compose bytes to do the task at hand
o Especially useful for languages for which we don't have enough data or

pretokenizers

e Allows models to deal with noisy inputs (spelling errors, language
variation)

Tokenizer-Free Approaches: Efficiency

e Encoder Only: CharacterBERT
Use a CNN to encode characters to word-level representations
e Encoder Only: Canine (Clark et al. 2022)
Downsample representation of local one-layer attention.
e Encoder-decoder: ByT5 (Xue, et al. 2022)
Uses shallow decoder, predicts the masked patches of ~20 bytes (for comparison 3 tokens in mT5).
e Encoder-decoder: CHARFORMER (Tay, Tran, et al. 2022)
Uses convolution to obtain representation of variable length blocks of characters.
e Decoder-only: MEGABYTE (Yu et al. 2023)
Autoregressive models trained on byte sequences (grouped into 4-element patches). Text + Images.
e Decoder-only: “Dynamic Token Pooling” (Nawrot et al., 2023)
Local representation based on pooling variable-length of tokens. Auxiliary loss used for segmentation.

e Basic idea: use a shallow network to compose characters/bytes into
longer representations. Apply masked language modelling loss.

|l earn

Masked LM

Patch Embed Patch Embed Patch Embed Patch Embed

| am <mask> ing a bout

Encoder Only Models

e CharacterBERT

Wordpiece
embeddings

Apple

Requires word tokenization,
technically a word-level
model

Loss is masked language
modelling — uses top 100K
words to compute loss

CharacterBERT

Single model
|

Ensemble
]

Test score
of best dev.

BERT ...

CharacterBERT |
BERT

medical

CharacterBERT . |

BERT (Devlin et al, 2018)

BlueBERT (Peng et al, 2019)

MEDNLI (Accuracy)

T6 77 7B T9 BO B1 B2 B3 B4 B5 BE &7 &5

ChemProt (F1)

6 &7 68 69 TO T1

1

==
=]

s

)

72 T3 74 75 76

2

i2b2/VA 2010 (Strict F1)

g

w
-

k]
F ' o
=4
l'l»ll ’ . 3

R

T8

7

8

7 T3 80

&

81

82 83 84

ClinicalSTS (Pearson Corr.)

a7

Encoder Only Models

e CANINE
X € hinit hdown h'down Yels hup ¥Yseq
[: Position 0
v Usedas [CLS] (__] :]
= representation
[: | J [for classification :]
______________________ > [P » ~ - ~ BTN ERE = RO
) Hash [)| Single [: ~ Downsample] [Upsampling Sinale :]
Embedding Local 5, (Strided — / Transfgrmer
Transformer Convolution) ‘ ' — :]
Codepoint Character Contextualized Deep Transformer Stack Concatenated Final Character
Integers Embeddings Characters Convolved Representation

. Representations for Sequence Tasks

No need for any proprocessing
Loss is still masked language modelling but computed over bytes

Implicitly tokenizes the input string to equal length tokens.

CANINE

Examples TYDIQA TyYDIQA

Model Input MLM r Length / sec Params SeLectP MINSpPaN
mBERT (public) Subwords Subwords - 512 — 179M 63.1 50.5
mBERT (ours) Subwords Subwords — 512 9000 179M 63.2 51.3

Chars Single Chars 1 2048 925 127M 595 3.7y 43.7 (-7.5)

Chars Subwords 1 2048 900 127M 63.8 (+0.6) 50.2 (-1.0)

CANINE-S Chars Subwords 4 2048 6400 127TM 66.0 (+2.8) 52.5 (+1.2)

CANINE-C Chars Autoreg. Chars 4 2048 6050 127M 65.7 (+2.5) 53.0 (+1.7)

CANINE-C + n-grams Chars Autoreg. Chars 4 2048 5600 167TM 68.1 (+4.9) 57.0 (+5.7)

Encoder-decoder model: ByT5

In Japan cloisonné enamels are known as shippo-yaki (£ =)

UTF-8 ByTS

Encode \‘

73 110 32 74 97 112 97 110 32 99 108 111 105 115 111 110 110 195 169 32 101 110 97
109 101 108 115 32 97 114 101 32 107 110 111 119 110 32 97 115 32 115 104 105 112
112 197 141 45 121 97 107 105 32 40 228 184 131 229 174 157 231 132 188 41 46

In Japan cloisonné é, enamels are known a
s shippo,o,-yaki (£, t, t, %, £, 5,5, % 5%,).

mT5

Pre-trained
SentencePiece
Model

563 9466 42452 48805 1220 29171 9617 418 259 15965
527 150911 4370 264 129213 274 15390 9913 43105 483

_In_Japan _clo ison né _enam els _are _
known _as _shipp 8 -yaki _(£ =).

Inputs Targets Inputs /A\\Targets
_In _Japan _cloison {X) (X} né _enam els In Japan clois{X)e {(X)onné &, enamel
_are _known _as _shipp 0) Z8]). D known as shippd,d, sar(t£, £, 5,
-Yak'_(ﬂ‘f’i | -yaki (Tm =855,
[Light Decoder |
Encoder Decoder Heavy
Encoder

ByT5 - Better at multilingual and noisy input

ByTS — mT5

ByT5 — mT5

®oKo

rean

®Indonesian

4 -
@ ®Englis
39.® Finnish
Swahili Telugu
2 ® Arabic ®
14 ®Bengali
0 -
-1 T T T T T T T T
3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Avg. bytes per mT5 token
®Spanish
—L.0 {vietnamese ®Urdu
@ Turkish
—~1.51 Fre .Germanmabic ®Bulgarian
® i
Swahili English
=2.01 oGreek
) Russian
®Chinese L
—2.5 - Hindi
—3.0 1
3 4 5 6 7 8

Avg. bytes per mT5 token

Learnable Noise Unseen Noise

XNLI TyDiQA- XNLI

Model (accuracy) GoldP (F1) (accuracy)
Clean mT5 81.1 853 81.1
ByT5 797 877 797
b mT5 102 24.0 183
op ByT5 8.2 195 114
» mT5 8.5 9.5 12.3
Repetitions /1 41 3.0 5.9
Antsocak mT5 320 271 344
nispea ByT5 8.7 48 244
Unercase T3 7.0 8.0 8.1
ppercas ByT5 15 05 17
mT5 257 143 19.2
Random Case .5 1.5 0.2 59

Table 6: Degradation of mT5 and ByT5 under various
types of noise. “Clean” shows original task performance.
Subsequent rows show the delta from “clean” when
adding different types of noise. Learnable noise is added
in training and eval, while unseen noise only affects eval.

Charformer: A more efficient T5

c h a r f o r m e r c h a r f o r m e r

e DEHEHDHEEEOEE v 0] 6w @) 06 6) 6
2-Blocks [X, l { X,] [X, I [X,] [X, J | X][X, l [X,] [X, I X,] [X, H X, I P2 Py P Pra Pog Pi1az
3-Blocks [x| [x, | [x| [x| Dx [Ix) [x] x|] Pis Pac P Pipaz
4-Blocks | x | X, || X x‘||x5]|xﬁ X, xu|[xg'[x.°][x,_][x.__] P, - Por

(a) Formation of subword blocks to be scored by Fg. (b) Block scores that have been expanded

Offsets and/or pre-GBST convolutions not shown. back to length L. Softmax is taken over block
scores at each position ¢ to form block weights for
constructing latent subword representations.

Figure 2: Illustration of subword block formation and scoring.

Charformer Speed up

Table 6: Pre-training compute metrics of models at different input lengths, downsampling rates,
and model sizes on the English C4 dataset. 16 TPUv3 chips were used for this experiment. These
numbers reflect a batch size of 64. Memory refers to per-device peak memory usage on TPUv3 chips.

Model L ds 6] Speed (steps/s) FLOPS Peak Mem.
T5Base (Subword) 512 - 220M 9.3 1.1 x 10%° -
Byte-level TS pase 1024 1 200M 8.2 2.9 x 10" 3.09GB
Byte-level TS4LASC ase 1024 4 205M 15 9.9 x 102 1.62GB
CHARFORMER Base 1024 2 206M 11 16 x 10" 1.95GB
CHARFORMER Base 1024 3 203M 15 1.1 x 10" 1.63GB
CHARFORMER S 3ase 1024 2 134M 14 1.3 x 103 1.73GB
CHARFORMERS Base 1024 3 134M 20 8.7 x 102 1.34GB

Charformer is still used internally in certain Google products (as of 2023).

Token-free models so far

e Are capable of “encoding” character/bytes efficiently. Have been
shown to work well for text understanding tasks

e They are not capable of/efficient at generating text

e They still implicitly tokenize in “fixed length tokens” or patches

Decoder Only Models: MEGABYTE

hlocal—out
L]
_bytég_tra _sfo

hloca.l-in

Y S A
Global Model J
[|
| | |
| |
Patch Patch Patch
Embed Embed Embed
|
CITTT1 [T |
me ga by te tran

Figure 1. Overview of MEGABYTE with patch size P = 4.

Dynamic Patches: Learning to Tokenize with the model

Residual connection

Y -~ ™\
—Ll —
[l] \
] | I— —1
— — —
| 5 E— 5 —
— = L il 5 —
[E— — Transformer = (I—
[— = — — | B —
[— @ w — layers & —
] =] [— = (—
=2 | Bl = - =
3 E —] s 8 —
w w
— — — | = —
— E : : | ==
X< £ h u X
t [=] \ t+
-t .
2 _
= Pooling Up-sampling

Figure 1: The architecture of a dynamic-pooling Transformer, which jointly performs language modelling and token
segmentation. The boundary predictor predicts segment boundaries and pools together groups of variable length by
averaging. The shortened sequence is processed efficiently by a series of intermediate layers, then up-sampled back
to the original length via duplication. The model generates the next token z, in the same resolution as the input.

Allows controlling the sequence length via a hyperparameter

English Finnish Hebrew Vietnamese
text8 wiki40b cc-100 wiki40b wiki40b wiki40b

BPC SF BPC SF BPC SF BPC SF BPC SF BPC SF
Vanilla 1.143 (1.0x) | 1.091 (1.0x) | 1.225 (1.0x) | 0.945 (1.0x) | 1.274 (1.0x) | 1.065 (1.0x)
Fixed (SF=2) | 1.149 (2.0x) | 1.084 (2.0x) | 1.224 (2.0x) | 0.946 (2.0x) | 1.279 (2.0x) | 1.060 (2.0x)
Fixed (SF=3) | 1.155 (3.0x) | 1.093 (3.0x) | 1.229 (3.0x) | 0.951 (3.0x) | 1.290 (3.0x) | 1.068 (3.0x)
Fixed (SF=4) | 1.166 (4.0x) | 1.102 (4.0x) | 1.240 (4.0x) | 0.961 (4.0x) | 1.304 (4.0x) | 1.087 (4.0x)
Gumbel 1.136* (4.6x) | 1.080 (4.7x) | 1.212* (4.6x) | 0.941 (2.6x) | 1.281 (4.7x) | 1.061 (4.3x)

Follow up Works that improve dynamic patches

s n -, -

Chinrsictar ; Tokenizer b | Token Model Character Decoder 1

Embeddings: == : : :
M — "
3 — I_E"%E"—:I Pool = - I
-C—1. . M 2 SE| -
pym— I e — S 88
o], 3§ —— EEE, :_ el T
>) — — 10
\\ /I \ /I Y

-____——_?‘_T'Conne_ch_(-)n _____________ -

Figure 2: The architecture for Toucan, the token-aware Hourglass Transformer. End-of-token (EOT) vectors and
labels (¥) are inserted into the character sequences so that the decoder learns token boundaries during training. As

per the original model, learned NULL vectors are used to predict the characters in the first token.

Enable faster generation (similar to MEGABYTE)

Prior Work MAGNET

Transformer Block

Transformer Block !

Indic
predlctor

T
q_,r.|

B

Transformer Block :
t :

|MonoHngua\ Sequence

Indic

Latin
sequence

Cyrl
sequence

sequence

Transformer BloCk

ipTP

ENGLISH: Aerosmith have cancelled their remaini
MAGNET [ercsmit) [aavd (e (Femamming Foncey
BPE feled ({heiy (FEmaining
DTP

concerts 00 their tour

@ caoem MypHe

i RUSSIAN: Tpynna Aerosmith P
i MACNE |ﬁ@@-@@-m

{ BPE O o () frod fmi (69 e g foerag) [maacd fommep) g
DTP o8 s Aeroam) (@) D)) (2)ms) o R QJ][L_
TELUG o D83088 w008 Sobs sdbom BE
MAGN F

BPE EOO0EE

Bnet

EEO .JU[_IJU

Figure 1: MAGNET routes byte-level sequences via language-script specific boundary predictors.
These predictors infer boundaries leading to equitable segmentation across languages. Prior work infers
boundaries with a single predictor across languages and leads to over-segmentation.

Enable fairer tokenization rates across languages

Tokenization-Free LM: Promises and Challenges

Subword Tokenization

Produces short sequences of tokens,
thus speeds up processing.

Enables learning local structure: can
preserve morphological boundaries.

Performs better than naive
byte/character LM.

Characters or Bytes

Data-agnostic, does not require
training or deciding on tokenization
rules.

Covers all writing scripts and
languages.

Unaffected by text variation (typos,
inflection, dialectical spelling).

Can encode other modalities.

Bonus: Text as images

R dod efiof m_atheal | dindr |

Decoder

SN EEEE EEEES

[Encoder }
%

o CLS Embedding & Span Mask m patches 7
o Projection + Position Embedding - N

|My|ca|: 4mc| erijogls 4at1ng|wa|}m *atrlueal_ f{:r‘ '.unl:h |anr:| dilnnqr‘. |

o Render Text as Image

— . .
My cat c G enjoys eating warm catmeal for
lunch and dinner.

Bonus: Redefine Unicode

e MYTE: Morphological Byte. Instead of storing characters, store
morphemes as multi-byte sequences

UTF-8 [@26F 75 67 68 6C 79) (61 74 (31 32
MYTE (62 82 A3 93 6C 79) (61 74) (81 32)

cs

UTF-8 ([0 Cs 99 69 62 6C 69 C5 BE 6E C4 98) (76 65) (81 32)

MYTE (B 84 81 53 80 96 BB 43 97) (76 65) (31 32)

TE: (80088 (12)(35)

UTF-& (EoBo Bo Eo Bo B8 E0 B1 81 E0 B0 AE E0 BO BE EO B0 B0 E0 B1 81)

(31 32) (Eo Bo B5 E0 B0 A6 E0 B1 8D E0 B0 A6)

MYTE (7 83 B7 94 Eo B1 81 57 80 8F B4) (31 32) (57 82 9C &B)

Bonus: Use faster architectures -- MambaByte

e Mamba: An efficient architecture show to perform similarly to
Transformers but MUCH faster

e |dea: simply model bytes or characters using a Mamba architecture

What'’s the outlook?

e New tokenizer-free methods have shown promise especially for
multilingual models and noisy inputs.

e What about other issues?
o Do character based models perform character-level tasks (reverse a string, count
the number of characters in a string etc).
Have math abilities improved?
Have coding abilities improved?

Tokenization in other modalities

Why do we need to tokenize image, speech, videos?

To train multimodal LMs. If we can represent each modality as discrete
token, we can train a multimodal LM as next token prediction by
mMixing modalities

Tokenization in other modalities
Speech

a. b. C.
Tokens | s | Y |[Fo[H]H]H][Y]F,]

-III|II|||I / text

- [Interleave |
m Speecly BOOOOMNODOOOODOOOOEOO0OOOO]

] ™ o &
[Lama 2 | fotens [spenc) [spenc |
r

G | S Q-
o)
s :
5 i l . | Deduplicate |
Speech | - 40ms
Ene Hubert g, [g
--||||||||| / text Text Eal your raisins outdoors onthe porch Fo Esom
St [E 1000ms Iy

R

Figure 1: a. The SPIRIT LM architecture. A language model trained with next token prediction; tokens
are derived from speech or text with an encoder, and rendered back in their original modality with a
decoder. SPIRIT LM models are trained on a mix of text-only sequences, speech-only sequences, and
interleaved speech-text sequences. b. Speech-text interleaving scheme. Speech is encoded into tokens
(pink) using clusterized speech units (Hubert, Pitch, or Style tokens), and text (blue) using BPE. We
use special tokens [TEXT] to prefix text and [SPEECH] for speech tokens. During training, a change of
modality is randomly triggered at word boundaries in aligned speech-text corpora. Speech tokens are
deduplicated and interleaved with text tokens at the modality change boundary. ¢. Expressive Speech
tokens. For SPIRIT LM EXPRESSIVE, pitch tokens and style tokens are interleaved after deduplication.

Tokenization in other modalities

Images

Non-Object-

Object-Centric

Centric Image

Image

Non-Semantic
Tokenization

Semantic
Tokenization

E

e e

0 el of of

Encoder Decoder

Figure 2. Complete encoder/decoder architecture of the state
VQVAE. Encoder compresses s1.;+1 and a1 to a continuous la-
tent z;41. The quantization layer returns the nearest code e;41, as
well as the corresponding index k1, in its codebook E. Decoder
uses s1:¢, a1:¢ and the code e;+1 = El[k:41] to reconstruct s;41.

	Slide 1: Tokenization and Tokenizer-Free LMs
	Slide 2: Logistics
	Slide 3
	Slide 4
	Slide 5: Agenda
	Slide 6: What’s tokenization
	Slide 7: Why do we need to tokenize?
	Slide 8: Set of all tokens form a vocabulary
	Slide 9: A simple tokenizer: Split by whitespace?
	Slide 10: What about a word level tokenizer?
	Slide 11: Some related terminology
	Slide 12: Word level tokenizer – How to define a vocabulary?
	Slide 13: Handling Unknown Words
	Slide 14: Limitations of <UNK>
	Slide 15: Word Level Tokenization Other Limitations
	Slide 16: A simpler tokenizer: Character-level
	Slide 17: Current standard: Subword Tokenization
	Slide 18: A redefinition of the notion of tokenization
	Slide 19: Byte-Pair-Encoding (BPE) [coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]
	Slide 20: Byte-Pair-Encoding (BPE) – Token learner [coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]
	Slide 21: Byte-Pair-Encoding (BPE) – Token learner Example
	Slide 22: Byte-Pair-Encoding (BPE) – Token learner Example
	Slide 23: Byte-Pair-Encoding (BPE) – Token learner Example
	Slide 24: Byte-Pair-Encoding (BPE) – Token learner Example
	Slide 25: Byte-Pair-Encoding (BPE) – Token learner Example
	Slide 26: Byte-Pair-Encoding (BPE) – Token segmenter [coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]
	Slide 27: Byte-Pair-Encoding (BPE) – Token segmenter [coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]
	Slide 28: A variant of BPE: WordPiece used in BERT and some follow ups
	Slide 29: BPE/Wordpiece summary
	Slide 30: Unigram LM Tokenizer
	Slide 31: Base Vocabulary
	Slide 32: Unigram LM loss
	Slide 33: Probability of a word
	Slide 34: Unigram Tokenization Algorithm
	Slide 35: Unigram Tokenization Algorithm (Slightly Faster)
	Slide 36: How to tokenize once the vocabulary is decided
	Slide 37: Unigram vs BPE
	Slide 38: Subword methods are not TRULY open-vocabulary
	Slide 39: Solution: Byte-level subword Models (BBPE)
	Slide 40: Subword Models -- Summary
	Slide 41: Issues with subword models
	Slide 42: Non-concatenative Languages
	Slide 43: Subword Tokenization and “noise”
	Slide 44: Subword Tokenization and “numbers”
	Slide 45
	Slide 46: Sequence Lengths, Costs, and Performance
	Slide 47: Sequence Lengths, Costs, and Performance
	Slide 48: Sequence Lengths, Costs, and Performance
	Slide 49
	Slide 50: Recent tweaks to subword tokenizers
	Slide 51: Tokenizer-free Models
	Slide 52: Character/Byte-level Language Models
	Slide 53: Why character/byte level models
	Slide 54: Tokenizer-Free Approaches: Efficiency
	Slide 55
	Slide 56: Encoder Only Models
	Slide 57: CharacterBERT
	Slide 58: Encoder Only Models
	Slide 59: CANINE
	Slide 60: Encoder-decoder model: ByT5
	Slide 61: ByT5 – Better at multilingual and noisy input
	Slide 62: Charformer: A more efficient T5
	Slide 63: Charformer Speed up
	Slide 64: Token-free models so far
	Slide 65: Decoder Only Models: MEGABYTE
	Slide 66: Dynamic Patches: Learning to Tokenize with the model
	Slide 67
	Slide 68: Follow up Works that improve dynamic patches
	Slide 69: Tokenization-Free LM: Promises and Challenges
	Slide 70: Bonus: Text as images
	Slide 71: Bonus: Redefine Unicode
	Slide 72: Bonus: Use faster architectures -- MambaByte
	Slide 73: What’s the outlook?
	Slide 74: Tokenization in other modalities
	Slide 75: Tokenization in other modalities Speech
	Slide 76: Tokenization in other modalities Images

