
Tokenization and
Tokenizer-Free LMs
CSE 5539: Advanced Topics in Natural Language

Processing
https://shocheen.github.io/courses/advanced-nlp-fall-2024

Logistics

● Mid-term report: due tonight

● Quiz also due tonight – just 3 multiple choice questions.

2

3

4
[`Let's build the GPT Tokenizer’ by Andrej Karpathy]

https://youtu.be/zduSFxRajkE?feature=shared

Agenda

I. Prior and current tokenization practices and their issues
I. Word-level tokenization

II. BPE, WordPiece, Unigram

II. Tokenization-free language models
I. Byte-level models

II. Fixed-length patching: Charformer, Canine et al.

III. Dynamic Patching: Learnable tokenization

III. A brief look at “tokenization” in other modalities.

What’s tokenization

Recall: A language model is a probability distribution over a sequence of
“tokens”; each token is from a “vocabulary”.

What is a token: “basic unit that need not be decomposed for further
processing” – traditionally defined as a word
[Webster and Kit, 1992]

Tokenization: Splitting or segmenting a “string” of text into a sequence of tokens

6

“I love watching the television”

x̄ = ⟨I, love, watching, the, television⟩

https://aclanthology.org/C92-4173/

Why do we need to tokenize?

● Tokenization is not a typical preprocessing step in most machine
learning domains

● Neural networks work with real-valued numbers. Most machine
learning deals with continuous data but text is discrete

● Text needs to be converted to a form that a model can
consume/generate.

Set of all tokens form a vocabulary

● Given a tokenization algorithm
○ Tokenize a corpus of text
○ Collect all unique tokens (aka types) → vocabulary

● The role of vocabulary in a language model
○ The vocabulary and its size is part of the model architecture
○ It defines the size of the input embedding table and final output layer

■ large vocabulary = more parameters

A simple tokenizer: Split by whitespace?

• Tokenization is not simple, and tokenizers require many specialized rules

• Such as, what will we do with the following strings:

- “amazing!”, “state-of-the-art”, “unthinkable”, “prize-winning”, “aren’t”, “O’Neill”

- Some languages don’t even use spaces to mark word boundaries!

9

“I love watching the television”

x̄ = ⟨I, love, watching, the, television⟩

Çekoslovakyalılaştıramadıklarımızdanmışsınız

You are one of those whom we could not turn into a

Czechoslovakian.

私は日本語を勉強しています

I am studying Japanese.

What about a word level tokenizer?

● Define each token as a word or a punctuation:
○ What is a word: smallest unit of language that carries meaning and can stand

alone or combine with other units to create more complex meanings

● How to split into words?
○ For languages like English:

■ Could be simple regexes: split on all spaces and punctuation
● What about “The value of pi = 3.14”, “the IP address is 0.0.0.0”
● What about “He got cold feet” → should cold feet be one or two words?

○ For languages like Chinese:
■ 我爱自然语言处理 (I love Natural Language Processing)
■ Need specialized tools (e.g. jieba)

Some related terminology

⚘ A morpheme is the smallest meaning-bearing unit of a language

○ “unlikeliest” has the morphemes {un-, likely, -est}

⚘ Morphology is the study of the way words are built up from morphemes

⚘ Word forms are the variations of a word that express different grammatical categories

○ Tense (when something happened; past, present, future)

○ Case (inflecting nouns/pronoun and their modifiers to express their relationship with other

words; English has largely lost its inflected case system)

○ Number (singular/plural)

○ Gender (masculine, feminine, neuter; not extensively used in English)

and thus help convey the specific meaning and function of the word in a sentence

11

Word level tokenizer – How to define a vocabulary?

● Given a tokenization algorithm
○ Tokenize a corpus of text
○ Collect all unique tokens → vocabulary

● For a English corpus, a corpus like OpenWebText can have 1M+ unique
words
○ Vocabulary becomes too large

● A popular solution: Cut this list to include only K tokens.
○ How to chose K – based on frequency
○ What to do with the rest? – replace with an UNK “unknown” token
○ Word level tokenizers lead to “closed” vocabulary models.

Handling Unknown Words

• What happens when we encounter a word that we have never seen in our
training data?

- Not much we can do

- Except assigning to it a special <UNK> token

- Why this is bad?

13

Limitations of <UNK>

● Generally, we lose most of the information the word conveys. UNKs
don’t give features for novel words that are useful anchors of
meaning
• What if you want to generate a word which is not in the vocabulary? Imagine ChatGPT

generating UNK.

● Especially hurts in [productive] languages with many rare
words/entities

• The chapel is sometimes referred to as "Hen Gapel Lligwy" ("hen" being the Welsh word
for "old" and "capel" meaning "chapel").

• The chapel is sometimes referred to as " Hen <unk> <unk> " (" hen " being the Welsh word for "
old " and " <unk> " meaning " chapel ").

14

Word Level Tokenization
Other Limitations

• Word-level tokenization
treats different forms of the
same root as completely
separate (e.g., “open”,
“opened”, “opens”,
“opening”, etc)

• This means separate
features or embeddings.

• Why is this a problem?

15

A simpler tokenizer: Character-level

Issues

● Make sequences very long

● Word-level models provide an inductive bias to models. BUT character-level models must learn to
compose characters into words.

○ Need deeper models

16[Jurafsky and Martin Sec 2.4 p17]

I love watching the television

<I _ l o v e _ w a t c h i n g _ t h e _ t e l e v i s i o n>

https://web.stanford.edu/~jurafsky/slp3/2.pdf

Current standard: Subword Tokenization

• “Word”-level: issues with unknown words and
information sharing, and gets complex fast

- Also, fits poorly to some languages

• Character-level: long sequences, the model needs
to do a lot of heavy lifting in representing that is
encoded in plain-sight

• Let’s find a middle ground!

• Subword tokenization first developed for
machine translations

- Based on byte pair encoding (Gage, 1994)

• Now, used everywhere

17

Neural Machine Translation of Rare Words with Subword Units

Rico Sennrich and Barry Haddow and Alexandra Birch

School of Informatics, University of Edinburgh
{rico.sennrich,a.birch}@ed.ac.uk, bhaddow@inf.ed.ac.uk

The main motivation behind this
paper is that the translation of
some words is transparent in that
they are translatable by a
competent translator even if they
are novel to him or her, based on a
translation of known subword units
such as morphemes or phonemes.

mailto:bhaddow@inf.ed.ac.uk

A redefinition of the notion of tokenization

Due to:

○ Scientific results: The impact of sub-word segmentation on machine translation performance in
2016

○ Technical requirements: A fixed-size vocabulary for neural language models & a reasonable
vocabulary size

…in current NLP, the notion of token and tokenization changed

“Tokenization” is now the task of segmenting a sentence into non-typographically (&
non-linguistically) motivated units, which are often smaller than classical tokens, and
therefore often called sub-words

Typographic units (the “old” tokens) are now often called “pre-tokens”, and what used to
be called “tokenization” is therefore called nowadays “pre-tokenization”

○ https://github.com/huggingface/tokenizers/tree/main/tokenizers/src/pre_tokenizers 18

[Mielke et al., 2021]

https://github.com/huggingface/tokenizers/tree/main/tokenizers/src/pre_tokenizers
https://arxiv.org/abs/2112.10508

Main idea: Use our data to automatically tell us what the tokens should be

Token learner:
Raw train corpus ⇒ Vocabulary (a set of tokens)

Token segmenter:
Raw sentences ⇒ Tokens in the vocabulary

19

Byte-Pair-Encoding (BPE)
[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé
(2019) for more]

[Jurafsky & Martin (2023)]

https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/P16-1162/
https://aclanthology.org/D19-1141/
https://aclanthology.org/D19-1141/
https://web.stanford.edu/~jurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) – Token learner
[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé
(2019) for more]
Raw train corpus ⇒ Vocabulary (a set of tokens)
● Pre-tokenize the corpus in words & append a special end-of-word symbol _ to each

word

● Initialize vocabulary with the set of all individual characters

● Choose 2 tokens that are most frequently adjacent (“A”, “B”)
○ Respect word boundaries: Run the algorithm inside words

● Add a new merged symbol (“AB”) to the vocabulary

● Change the occurrence of the 2 selected tokens with the new merged token in the
corpus

● Continues doing this until k merges are done

All k new symbols and initial characters are the final vocabulary
What’s k? Open research question, see Mielke et al., 2021 Sec 6.6; 30K is seen frequently

20
[Jurafsky & Martin (2023)]

https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/P16-1162/
https://aclanthology.org/D19-1141/
https://aclanthology.org/D19-1141/
https://arxiv.org/abs/2112.10508
https://web.stanford.edu/~jurafsky/slp3/2.pdf

21

Byte-Pair-Encoding (BPE) – Token learner Example

[Example from Jurafsky & Martin (2023), pages 18–19]

word occurrence
count in the corpus

each word is split into characters

https://web.stanford.edu/~jurafsky/slp3/2.pdf

22
[Example from Jurafsky & Martin (2023), pages 18–
19]

Byte-Pair-Encoding (BPE) – Token learner Example

⚘ Counts all pairs of adjacent symbols
⚘ The most frequent is the pair e r [a total of 9 occurrences]
⚘ Merge these symbols, treating er as one symbol, & add the new symbol to the vocabulary

https://web.stanford.edu/~jurafsky/slp3/2.pdf

23
[Example from Jurafsky & Martin (2023), pages 18–
19]

Byte-Pair-Encoding (BPE) – Token learner Example

⚘ Counts all pairs of adjacent symbols
⚘ The most frequent is the pair er _
⚘ Merge these symbols, treating er_ as one symbol, & add the new symbol to the vocabulary

https://web.stanford.edu/~jurafsky/slp3/2.pdf

24
[Example from Jurafsky & Martin (2023), pages 18–19]

Byte-Pair-Encoding (BPE) – Token learner Example

⚘ Counts all pairs of adjacent symbols
⚘ The most frequent is the pair n e
⚘ Merge these symbols, treating ne as one symbol, & add the new symbol to the vocabulary

https://web.stanford.edu/~jurafsky/slp3/2.pdf

25
[Example from Jurafsky & Martin (2023), pages 18–19]

Byte-Pair-Encoding (BPE) – Token learner Example

Final vocabulary

https://web.stanford.edu/~jurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) – Token segmenter
[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé
(2019) for more]
● The token segmenter is used to tokenize a test sentence

○ Just runs on the test data the merges we’ve learned from the training data, greedily, in the order we
learned them

● First, we segment each test sentence word into characters

● Then, we apply the first merge rule
● E.g., replace every instance of e r in the test corpus with er

● Then the second merge rule
● E.g., replace every instance of er _ in the test corpus with er_

● And so on

26
[Example from Jurafsky & Martin (2023), pages 18–19]

https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/P16-1162/
https://aclanthology.org/D19-1141/
https://aclanthology.org/D19-1141/
https://web.stanford.edu/~jurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) – Token segmenter
[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé
(2019) for more]

● Test example: slow_ → s l o w_ → s lo w_ -> s low_

● Test example: now → n o w

BPE can tokenize a word never seen at training time.

Leads to an open vocabulary model*

Can often learn morphological segmentations

Deescalation → De escalat ion

27
[Example from Jurafsky & Martin (2023), pages 18–19]

https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/P16-1162/
https://aclanthology.org/D19-1141/
https://aclanthology.org/D19-1141/
https://web.stanford.edu/~jurafsky/slp3/2.pdf

A variant of BPE: WordPiece
used in BERT and some follow ups

● Training algorithm: Same as BPE

● Tokenization algorithm: greedily pick the longest prefix that exists
in the vocabulary (and repeat)

○ Slow_ → s low_ [stop]

BPE/Wordpiece summary

● Start with a character vocabulary

● Merge frequent bigrams

● Repeat until a desired vocab size/merge size is reached.

Unigram LM Tokenizer

1. Start with a large base vocabulary, remove tokens until a desired size is
reached.

1. How to construct a base vocabulary: all substrings of pre-tokenized
words OR start with a large BPE vocabulary.

1. How to remove tokens:
a. Compute the unigram LM loss over the corpus (more details later)
b. Removing tokens increases this loss.
c. Select and remove tokens that increase it the least.
d. Repeat

Base Vocabulary

● The corpus:

("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

● Initial Vocabulary (all strict substrings)

("h", 15) ("u", 36) ("g", 20) ("hu", 15) ("ug", 20) ("p", 17) ("pu", 17) ("n", 16)

("un", 16) ("b", 4) ("bu", 4) ("s", 5) ("hug", 15) ("gs", 5) ("ugs", 5)

Unigram LM loss

● Unigram LM loss = negative log probability of the corpus.

● Probability of a corpus = product of marginal probability of
individual words

p(pug hugs bugs) = p(pug) x p(hugs) x p (bugs)

Probability of a word

● product of marginal probability of its subwords (based on
frequency)

p(pug) = p(“p”) x p(“u”) x p(“g”)

Or, p(pug) = p(“pu”) x p(“g”)

Or, p(pug) = p(“p”) x p(“ug”)

Choose highest of all possible splits (why?)

● How to this efficiently: Dynamic programming (Viterbi algorithm)

Unigram Tokenization Algorithm

1. Start with a base vocabulary

1. Compute the unigram loss, L, over the corpus

1. For every token, w, in the vocabulary
a. Remove w from the vocabulary and recompute the loss, L’(w)
b. Define score(w) = L’(w) - L

1. Compute w* = min_w score(w).
a. Remove w* from the vocabulary.
b. Got to step 2. Repeat until a desired vocabulary size is reached.

VERY SLOW!

Unigram Tokenization Algorithm (Slightly Faster)

1. Start with a base vocabulary

1. Compute the unigram loss, L

1. For every token, w, in the vocabulary
a. Remove w from the vocabulary and recompute the loss, L’(w)
b. Define score(w) = L’(w) - L

1. Compute W = x% of tokens with the lowest score.
a. Remove W from the vocabulary.
b. Go to step 2.

How to tokenize once the vocabulary is decided

● Viterbi again – tokenization which maximizes the unigram probability of the
word

○ (or find top k tokenizations)

● “Unhug” (For each position, the subwords with the best scores ending in that position:)

Character 0 (u): "u" (score 0.171429)

Character 1 (n): "un" (score 0.076191)

Character 2 (h): "un" "h" (score 0.005442)

Character 3 (u): "un" "hu" (score 0.005442)

Character 4 (g): "un" "hug" (score 0.005442) [final tokenization]

Unigram vs BPE

1. Why unigram over BPE and WordPiece?
a. Unigram finds optimal coding length of a sequence (according to Shannon’s

entropy).
b. Unigram allows sampling multiple tokenizations for every word – subword

regularization – robustness

1. Why is Unigram tokenization not more popular?
a. In many papers simply referred to as SentencePiece, which is actually not a

tokenizer but a library wrapping several tokenizers
b. Does the actual subword tokenizer matter as we scale up models?

Subword methods are not TRULY open-vocabulary

● What if you encounter a character not seen at training time?

● For example, a BPE model trained on only English encounters a
Chinese character at test time --- it gets assigned UNK

● How to solve this issue?
○ Train on a mix of all characters? Accounting for all languages, they are millions of

characters – vocabulary size would be too large

Solution: Byte-level subword Models (BBPE)

● Every written language is represented in Unicode

● Each character is a sequence of “bytes”.
○ Each byte is 8-bit. Total 256 unique byte values
○ Each character requires between 1 to 4 bytes.

Solution: Treat a corpus as a sequence of byte. Start the vocabulary with all bytes (256) and train a BPE

model. TRULY Open Vocabulary. Works for all characters!*

Unicode is a text encoding standard designed to support the use of

text in all of the world's writing systems that can be digitized. It has

multiple versions like UTF-8, UTF-16, UTF-32. UTF-8 is the most

common one.

Subword Models -- Summary

● Split text in tokens learned statistically from the training corpus

● Makes the model open vocabulary

● Subword methods prove to be an effective method of
“compressing text”

Issues with subword models

BERT thinks the sentiment of
"superbizarre" is positive because
its tokenization contains the
token "superb"

41
[Hofmann et al., 2021]

https://aclanthology.org/2021.acl-long.279/

Non-concatenative Languages

Subword Tokenization and “noise”

● He fell and broke his coccix (vs coccyx)

● Neighbor = 1 token, neighbour = two tokens

● John Smith = 2 tokens, Srinivas Ramanujam = ??

Subword Tokenization and “numbers”

● Why are LMs bad at basic arithmetic?
○ 3.14 is tokenized as 3.14
○ 3.15 is tokenized as 3 . 15

Natural phenomena like diacritics or a little easily human-readable noise lead to
unexpected BPE sequences and catastrophic translation failure

[Salesky et al., 2021]
45

https://aclanthology.org/2021.emnlp-main.576/

Sequence Lengths, Costs, and Performance

Sequence Lengths, Costs, and Performance

LLM APIs charge per token

Sequence Lengths, Costs, and Performance

49
[`Let's build the GPT Tokenizer’ by Andrej Karpathy]

https://youtu.be/zduSFxRajkE?feature=shared

Recent tweaks to subword tokenizers

● Tokenize each digit separately (i.e. no merge on digits)

● Add special tokens to deal with everything else:
○ E.g. special tokens for keywords from programming languages

● Train the tokenizer on a more balanced dataset.
○ Apply tricks like alpha-sampling – up sample lower resource languages and

scripts to up their frequency.
○ Does not solve all issues but helps.

Tokenizer-free Models
Goal: Eliminate the need to have a separately trained tokenizer.

Character/Byte-level Language Models

● Return of the character: Directly model characters or bytes

● How to deal with the inefficiencies?
○ Modify the model architecture

Why character/byte level models

● No linguistic inductive bias, let the model figure out how it needs to
compose bytes to do the task at hand
○ Especially useful for languages for which we don’t have enough data or

pretokenizers

● Allows models to deal with noisy inputs (spelling errors, language
variation)

Tokenizer-Free Approaches: Efficiency

● Encoder Only: CharacterBERT

Use a CNN to encode characters to word-level representations

● Encoder Only: Canine (Clark et al. 2022)

Downsample representation of local one-layer attention.

● Encoder-decoder: ByT5 (Xue, et al. 2022)

Uses shallow decoder, predicts the masked patches of ~20 bytes (for comparison 3 tokens in mT5).

● Encoder-decoder: CHARFORMER (Tay, Tran, et al. 2022)

Uses convolution to obtain representation of variable length blocks of characters.

● Decoder-only: MEGABYTE (Yu et al. 2023)

Autoregressive models trained on byte sequences (grouped into 4-element patches). Text + Images.

● Decoder-only: “Dynamic Token Pooling” (Nawrot et al., 2023)

Local representation based on pooling variable-length of tokens. Auxiliary loss used for segmentation.to

combine with architectural solutions.

● Basic idea: use a shallow network to compose characters/bytes into
longer representations. Apply masked language modelling loss.

Masked LM

Patch Embed Patch Embed Patch Embed Patch Embed

I a m <mask> i n g a b o u t

l e a r n

Encoder Only Models

● CharacterBERT

Requires word tokenization,

technically a word-level

model

Loss is masked language

modelling – uses top 100K

words to compute loss

CharacterBERT

Encoder Only Models

● CANINE

No need for any proprocessing

Loss is still masked language modelling but computed over bytes

Implicitly tokenizes the input string to equal length tokens.

CANINE

Encoder-decoder model: ByT5

ByT5 – Better at multilingual and noisy input

Charformer: A more efficient T5

Charformer Speed up

Charformer is still used internally in certain Google products (as of 2023).

Token-free models so far

● Are capable of “encoding” character/bytes efficiently. Have been
shown to work well for text understanding tasks

● They are not capable of/efficient at generating text

● They still implicitly tokenize in “fixed length tokens” or patches

Decoder Only Models: MEGABYTE

Dynamic Patches: Learning to Tokenize with the model

Allows controlling the sequence length via a hyperparameter

Follow up Works that improve dynamic patches

Enable faster generation (similar to MEGABYTE)

Enable fairer tokenization rates across languages

Tokenization-Free LM: Promises and Challenges

Subword Tokenization

● Produces short sequences of tokens,
thus speeds up processing.

● Enables learning local structure: can
preserve morphological boundaries.

● Performs better than naive
byte/character LM.

Characters or Bytes

● Data-agnostic, does not require
training or deciding on tokenization
rules.

● Covers all writing scripts and
languages.

● Unaffected by text variation (typos,
inflection, dialectical spelling).

● Can encode other modalities.

Bonus: Text as images

Bonus: Redefine Unicode

● MYTE: Morphological Byte. Instead of storing characters, store
morphemes as multi-byte sequences

Bonus: Use faster architectures -- MambaByte

● Mamba: An efficient architecture show to perform similarly to
Transformers but MUCH faster

● Idea: simply model bytes or characters using a Mamba architecture

What’s the outlook?

● New tokenizer-free methods have shown promise especially for
multilingual models and noisy inputs.

● What about other issues?
○ Do character based models perform character-level tasks (reverse a string, count

the number of characters in a string etc).
○ Have math abilities improved?
○ Have coding abilities improved?
○ ….

Tokenization in other modalities

Why do we need to tokenize image, speech, videos?

To train multimodal LMs. If we can represent each modality as discrete
token, we can train a multimodal LM as next token prediction by
mixing modalities

Tokenization in other modalities
Speech

Tokenization in other modalities
Images

	Slide 1: Tokenization and Tokenizer-Free LMs
	Slide 2: Logistics
	Slide 3
	Slide 4
	Slide 5: Agenda
	Slide 6: What’s tokenization
	Slide 7: Why do we need to tokenize?
	Slide 8: Set of all tokens form a vocabulary
	Slide 9: A simple tokenizer: Split by whitespace?
	Slide 10: What about a word level tokenizer?
	Slide 11: Some related terminology
	Slide 12: Word level tokenizer – How to define a vocabulary?
	Slide 13: Handling Unknown Words
	Slide 14: Limitations of <UNK>
	Slide 15: Word Level Tokenization Other Limitations
	Slide 16: A simpler tokenizer: Character-level
	Slide 17: Current standard: Subword Tokenization
	Slide 18: A redefinition of the notion of tokenization
	Slide 19: Byte-Pair-Encoding (BPE) [coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]
	Slide 20: Byte-Pair-Encoding (BPE) – Token learner [coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]
	Slide 21: Byte-Pair-Encoding (BPE) – Token learner Example
	Slide 22: Byte-Pair-Encoding (BPE) – Token learner Example
	Slide 23: Byte-Pair-Encoding (BPE) – Token learner Example
	Slide 24: Byte-Pair-Encoding (BPE) – Token learner Example
	Slide 25: Byte-Pair-Encoding (BPE) – Token learner Example
	Slide 26: Byte-Pair-Encoding (BPE) – Token segmenter [coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]
	Slide 27: Byte-Pair-Encoding (BPE) – Token segmenter [coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]
	Slide 28: A variant of BPE: WordPiece used in BERT and some follow ups
	Slide 29: BPE/Wordpiece summary
	Slide 30: Unigram LM Tokenizer
	Slide 31: Base Vocabulary
	Slide 32: Unigram LM loss
	Slide 33: Probability of a word
	Slide 34: Unigram Tokenization Algorithm
	Slide 35: Unigram Tokenization Algorithm (Slightly Faster)
	Slide 36: How to tokenize once the vocabulary is decided
	Slide 37: Unigram vs BPE
	Slide 38: Subword methods are not TRULY open-vocabulary
	Slide 39: Solution: Byte-level subword Models (BBPE)
	Slide 40: Subword Models -- Summary
	Slide 41: Issues with subword models
	Slide 42: Non-concatenative Languages
	Slide 43: Subword Tokenization and “noise”
	Slide 44: Subword Tokenization and “numbers”
	Slide 45
	Slide 46: Sequence Lengths, Costs, and Performance
	Slide 47: Sequence Lengths, Costs, and Performance
	Slide 48: Sequence Lengths, Costs, and Performance
	Slide 49
	Slide 50: Recent tweaks to subword tokenizers
	Slide 51: Tokenizer-free Models
	Slide 52: Character/Byte-level Language Models
	Slide 53: Why character/byte level models
	Slide 54: Tokenizer-Free Approaches: Efficiency
	Slide 55
	Slide 56: Encoder Only Models
	Slide 57: CharacterBERT
	Slide 58: Encoder Only Models
	Slide 59: CANINE
	Slide 60: Encoder-decoder model: ByT5
	Slide 61: ByT5 – Better at multilingual and noisy input
	Slide 62: Charformer: A more efficient T5
	Slide 63: Charformer Speed up
	Slide 64: Token-free models so far
	Slide 65: Decoder Only Models: MEGABYTE
	Slide 66: Dynamic Patches: Learning to Tokenize with the model
	Slide 67
	Slide 68: Follow up Works that improve dynamic patches
	Slide 69: Tokenization-Free LM: Promises and Challenges
	Slide 70: Bonus: Text as images
	Slide 71: Bonus: Redefine Unicode
	Slide 72: Bonus: Use faster architectures -- MambaByte
	Slide 73: What’s the outlook?
	Slide 74: Tokenization in other modalities
	Slide 75: Tokenization in other modalities Speech
	Slide 76: Tokenization in other modalities Images

