
Transformers &
Pretraining

CS 5539: Advanced Topics in Natural Language Processing

https://shocheen.github.io/courses/advanced-nlp-fall-2024

Slide Credits: Daniel Kashabi, Arman Cohen

Logistics

• Foundation Homework – how did everyone do?

• Course Project: Have you formed teams?
• Email me team names by tonight

• Compute Resources for projects
• OSC compute (should be assigned this week)
• Can also use Google Collab / Google Cloud (free student accounts)
• API access: Azure AI (free student account)

• No office hours this week – Please email to schedule next week

2

Paper presentations

• The assignments for the next two weeks are up:
• CS 5539: List of papers / assignments - Google Sheets

• 8 people present each week (2 sessions, 4 roles)

• Please submit your questions / discussion points the night before
(Sunday night 11.59 ET)

3

https://docs.google.com/spreadsheets/d/1kOJomboZX04jgtSltBpqy_xkhLiHBSRZr4Lq3s-QqTw/edit?gid=1556730722#gid=1556730722

Recap from last class

• What are language models
• Distributions over sequences of [words, character, tokens ….]

• What are they useful for
• Measure likelihood of given sequence, ranking different sequences, generating sequences,

and more

• How do you measure if a given language model is good
• Perplexity

• How do you train a language model
• N-gram LMs
• Neural LMs – Recurrent NNs

4

This Class: Transformer based Language Models

• Transformer Architecture
○ Attention is all you need: encoder-decoder architecture

• Transfer Learning: Pretraining / Finetuning paradigm
○ Main Paper: BERT (Encoder only model)
○ Guest Stars: T5 (Encoder/decoder model), GPT2 (decoder only model)

5

The cat sat on the mat

6

P(mat |The cat sat on the)

7

context or prefixnext word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)
contextnext word

8

P(𝑋1, … , 𝑋𝑁)
= ς𝑡 𝑃(𝑋t| X1, … , 𝑋𝑡−1)

contextnext word

But more broadly,

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

9

Chain rule

P(𝑋1, … , 𝑋𝑁)
contextnext word

But more broadly,

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

10

P(𝑋1, … , 𝑋N | 𝑌1, … , 𝑌𝑀)
A variant

additional input

Conditional Language Model

Language Models: N-grams

● Probabilistic n-gram models of text generation [Jelinek+ 1980’s, …]

● Applications: Speech Recognition, Machine Translation

11

LMs w/ Recurrent Neural Nets

• Core idea: apply a model repeatedly

[adopted from Chris Manning]

is the initial hidden state

words / one-hot vectors

word embeddings

the

sat on

book
s laptop

s

a zo
o

output distribution

hidden
states

Input

embedding

outputs

cat

12

Conditional LMs with RNNs

13
the

sat on

book
s laptop

s

a zo
o

output distribution

cat

13
13

el

se sentógato

Decoder

Encoder

RNNs: Cons

• Recurrent computation is slow, difficult to
parallelize.

• Each state is expected to store the entire
information from the previous context –
poor performance

[adopted from Chris Manning]

the students opened their

book
s lapto

ps

a zo
o

14

RNNs

• What if the decoder at each step pays “attention” to a
distribution of all of encoder’s hidden states?

• Intuition: when we (humans) translate a sentence, we don’t just
consume the original sentence then regurgitate in a new
language; we continuously look back at the original while
focusing on different parts

15

[adopted from Chris Tanner]

RNNs with Attention

16
the

cat

16
16

el

se sentógato

𝛼2𝛼1 𝛼4

Query vector
Key vectors (also the value vectors)

Context vector

RNNs with Attention

17
the

cat

17
17

el

se sentógato

[ℎ 2 , 𝑐(2)]

sat
lounged

a zo
o

RNNs with Attention

18

• Attention allowed modelling longer context and obtain higher
performance

• But
• It is still slow because of linear computation in RNN
• It still has gradient vanishing/exploding issues

• Solution: what if we removed the RNN component and only use
attention

• Attention is all you need (Vaswani et al 2017)

Transformers

• Replace the linear part with self-attention

• Introduce residual connections to improve gradient flow

• Introduce positional embeddings to encode sequential order

19

Self-Attention

𝑥4𝑥3𝑥2𝑥1

𝑏4𝑏3𝑏2𝑏1

𝑥4𝑥3𝑥2𝑥1

𝑏4𝑏3𝑏2𝑏1

Self-Attention Layer

• 𝑏𝑡 is obtained based on the
whole input sequence.

• can be parallelly computed.

Idea: replace any thing done by RNN with self-attention.

RNN

[adopted from Hung-yi Lee]“Neural machine translation by jointly learning to align and translate” Bahdanau etl. 2014;
“Attention is All You Need” Vaswani et al. 2017

20

Attention

• Core idea: on each step, use direct connection to focus (“attend”)
on a particular part of the context.

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762] 21

https://arxiv.org/abs/1706.03762

Defining Self-Attention

• Terminology:
• Query: to match others

• Key: to be matched

• Value: information to be extracted

• Definition: Given a set of vector values, and a vector query,
attention is a technique to compute a weighted sum of the value,
dependent on the query.

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762] 22

https://arxiv.org/abs/1706.03762

O
O

𝑣1

O
O

𝑘1

O
O

𝑞1

𝑥1

The

𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝑞𝑡 = 𝑊𝑞𝑥𝑡

𝑘𝑡 = 𝑊𝑘𝑥𝑡

𝑣𝑡 = 𝑊𝑣𝑥𝑡

O O O O O

23

O
O

𝑣1

O
O

𝑘1

O
O

𝑞1

𝑥1

O O O O O

The cat sat on

O
O

𝑣2

O
O

𝑘2

O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3

O
O

𝑘3

O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4

O
O

𝑘4

O
O

𝑞4

𝑥4

O O O O O

24

𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝑞𝑡 = 𝑊𝑞𝑥𝑡

𝑘𝑡 = 𝑊𝑘𝑥𝑡

𝑣𝑡 = 𝑊𝑣𝑥𝑡

O
O

𝑣1

O
O

𝑘1

O
O

𝑞1

𝑥1

O O O O O

The cat sat on

O
O

𝑣2

O
O

𝑘2

O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3

O
O

𝑘3

O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4

O
O

𝑘4

O
O

𝑞4

𝑥4

O O O O O

𝑞: query (to match others)

𝑘: key (to be matched)

𝑣: value (information to be extracted)

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

How much
should “The”
attend to other
positions?

𝛼1,𝑡 = ൗ𝑞1 ∙ 𝑘𝑡

𝛼

Scaled dot product

25

O
O

𝑣1

O
O

𝑘1

O
O

𝑞1

𝑥1

O O O O O

The cat sat on

O
O

𝑣2

O
O

𝑘2

O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3

O
O

𝑘3

O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4

O
O

𝑘4

O
O

𝑞4

𝑥4

O O O O O

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

How much
should “The”
attend to other
positions?

Softmax

ො𝛼1,1 ො𝛼1,2 ො𝛼1,3 ො𝛼1,4

𝜎 𝑧 𝑡 =
𝑒𝑥𝑝 𝑧𝑡

σ𝑗 𝑒𝑥𝑝 𝑧𝑗

26

O
O

𝑣1

O
O

𝑘1

O
O

𝑞1

𝑥1

O O O O O

The cat sat on

O
O

𝑣2

O
O

𝑘2

O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3

O
O

𝑘3

O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4

O
O

𝑘4

O
O

𝑞4

𝑥4

O O O O O

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

Representation of “The” given the attention weights

Softmax

ො𝛼1,1 ො𝛼1,2 ො𝛼1,3 ො𝛼1,4

O O 𝑏1 = ෍

𝑖

ො𝛼1,𝑡𝑣𝑡

27

O
O

𝑣1

O
O

𝑘1

O
O

𝑞1

𝑥1

O O O O O

The cat sat on

O
O

𝑣2

O
O

𝑘2

O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3

O
O

𝑘3

O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4

O
O

𝑘4

O
O

𝑞4

𝑥4

O O O O O

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

One issue: the model doesn’t know
word positions/ordering.

Softmax

ො𝛼1,1 ො𝛼1,2 ො𝛼1,3 ො𝛼1,4

O O 𝑏1 = ෍

𝑖

ො𝛼1,𝑡𝑣𝑡

28

How to encode position information?

• Self attention doesn’t have a way to know whether an input
token comes before or after another
• Position is important in sequence modeling in NLP

• A way to introduce position information is add individual
position encodings to the input for each position in the
sequence

𝑥𝑡 = 𝑥𝑡 + 𝑝𝑜𝑠𝑡

Where 𝑝𝑜𝑠𝑖 is a position vector

O
O

𝑣1

O
O

𝑘1

O
O

𝑞1

𝑥1

O O O O O

O
O

𝑣2

O
O

𝑘2

O
O

𝑞2

𝑥2

O O O O O

O
O

𝑣3

O
O

𝑘3

O
O

𝑞3

𝑥3

O O O O O

O
O

𝑣4

O
O

𝑘4

O
O

𝑞4

𝑥4

O O O O O

𝛼1,1 𝛼1,2 𝛼1,3 𝛼1,4

One issue: the model doesn’t know
word positions/ordering.

Softmax

ො𝛼1,1 ො𝛼1,2 ො𝛼1,3 ො𝛼1,4

O O 𝑏1 = ෍

𝑖

ො𝛼1,𝑡𝑣𝑡

O O O O O
𝑝1

O O O O O
𝑝2

O O O O O
𝑝3

O O O O O
𝑝4

𝑝𝑜𝑠𝑖 are unique vectors
representing positional
information

30

Properties of a good positional embedding

• It should output a unique encoding for each time-step
(word’s position in a sentence)

• Distance between any two time-steps should be
consistent across sentences with different lengths.

• The cat sat on the mat
• The happy cat sat on the mat

• Our model should generalize to longer sentences without
any efforts. Its values should be bounded.

• It must be deterministic.
31

Absolute position embeddings

• Learned positions embeddings:
• Maximum length that can be presented is limited

• Difficult to encode relative positions
• The cat sat on the mat

• The happy cat sat on the mat

Functional position embeddings

The frequencies are decreasing along the vector dimension. It forms a geometric progression
from 2π to 10000·2π on the wavelengths.

Sinusoidal Embeddings: Intuition

34Transformer Architecture: The Positional Encoding - Amirhossein Kazemnejad's Blog

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Variants of Positional Embeddings

• Rotary Positional Embeddings (RoPE): [2104.09864] RoFormer:
Enhanced Transformer with Rotary Position Embedding (arxiv.org)

• AliBi: [2108.12409] Train Short, Test Long: Attention with Linear
Biases Enables Input Length Extrapolation (arxiv.org)

• No embeddings(!?): [2203.16634] Transformer Language Models
without Positional Encodings Still Learn Positional Information
(arxiv.org)

35

https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2203.16634
https://arxiv.org/abs/2203.16634
https://arxiv.org/abs/2203.16634

Self-Attention: Back to Big Picture

• Attention is a way to focus on particular parts of the input

• Can write it in matrix form:

• Efficient implementations

• Better at maintaining long-distance dependencies in the context.
𝑥4𝑥3𝑥2𝑥1

𝑏1 𝑏2 𝑏3 𝑏4

Self-Attention Layer
𝒃 = softmax

𝑄𝐾T

𝛼
𝑉

36

Self-Attention

𝒃 = softmax
𝑄𝐾T

𝛼
𝑉

37

Multi-Headed Self-Attention

• Multiple parallel attention layers is quite common.
• Each attention layer has its own parameters.

Self-Attention Layer
Self-Attention Layer

𝑥4𝑥3𝑥2𝑥1

[Vaswani et al. 2017] 38

Variants of attention

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints (Ainslie et al., 2023)

multi-head Grouped-query multi-query

queries

keys

values

How Do We Make it Deep?

Multi-Headed
Self-Attention Layer

O O O O O O

Feed Forward Network

O O O O O O

• Add a feed-forward network on top it
to add more capacity/expressivity.

• Repeat!

Feedforward Net: Refresher

A fully-connected network

of nodes and weights.

40

Feed forward layer

• A position-wise transformation consisting of:
•A linear transformation, non-linear activation 𝑓 (e.g.,
ReLU), and another linear transformation.

𝐹𝐹 𝑐 = 𝑓 𝑐𝑊1 + 𝑏1 𝑊2 + 𝑏2
• This allows the model to apply another transformation to the

contextual representations (or “post-process” them)

• Usually the dimensionality of the hidden feedforward layer is 2-8 times
larger than the input dimension

A transformer block

𝐹𝐹 𝑐′ = 𝑓 𝑐′𝑊1 + 𝑏1 𝑊2 + 𝑏2

out = L𝑎𝑦𝑒𝑟N𝑜𝑟𝑚(𝑐′ + FF 𝑐′)

𝑞, 𝑘, 𝑣 = QKV_Projection(𝑥)

𝑐 = MultiHeadAttention(q, k, v)

𝑥: input sequence

𝑐′ = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑐 + 𝑥)

out

Transformer stack

• A stack of N transformer blocks (organized in N layers)

Encoder-Decoder Architectures

• Original transformer had two sub-models.

El gato se sento

En
co
de
r

D
ec
od
er

Representation (compression) of the context

Produces the output sequence item by item
using the representation of the context.

Processes the context and
compiles it into a vector.

44

Encoder-Decoder Architectures

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/45

Transformer [Vaswani et al. 2017]

• An encoder-decoder architecture
built with attention modules.

• 3 forms of attention

46

Transformers as machine translation models

47

Impact of Transformers

• Let to better predictive models of language ala GPTs!

[”Efficient Content-Based Sparse Attention with Routing Transformers” Roy et al. 2020] 48

Impact of Transformers

• A building block for a variety of LMs

Decoders

Encoders

Encoder-

Decoders

❖ Examples: GPT-2, GPT-3, Llama models, and many many more

❖ Other name: causal or auto-regressive language model

❖ Nice to generate from; can’t condition on future words

❖ Examples: BERT, RoBERTa, SciBERT.

❖ Captures bidirectional context. How do we pretrain them?

❖ Examples: Transformer, T5, BART

❖ What’s the best way to pretrain them?

49

Transformer LMs + Scale = LLMs

• 2 main dimensions:

• Model size, pretraining data size

1000

800

600

400

200

0

Sep-17

N
u

m
 P

ar
am

e
te

rs
 (B

ill
io

n
)

Model size over time

1400

1200

Apr-18 Oct-18 May-19 Dec-19 Jun-20 Jan-21 Jul-21

Wiki+books
(BERT,
2018)

~3B tokens

Wiki+books+ne
ws

(RoBERTa 2019)

~30B tokens

C4
(T5, 2020)

360B
tokens

Chinchilla
(2022)

1.4T tokens
Photo credit: https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-
megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-
generative-language-model/

http://www.microsoft.com/en-us/research/blog/using-deepspeed-and-

Large Language Models

• Not only they improved performance on many NLP tasks, but
exhibited new capabilities

Transformers - Summary

• Self-attention + positional embedding + others = NLP go brr

• Much faster to train than any previous architectures, much
easier to scale

• Perform on par or better than previous RNN based models
○ Ease of scaling allows to extract much better performance

52

Questions

53

Pretraining / Finetuning
BERT / GPT2 / T5

54

BERT: Motivation

• A typical recipe for any NLP task such as text classification,
translation, summarization, parsing etc.

○ Collect training examples (input, output)
○ Train a machine learning model (such as RNN/Transformer based model)

• Most NLP tasks share underlying features
○ Intuitively, all of them involve some level of “understanding”

• Instead of individual models for each task from scratch, can we learn
shared representations that can help each task

55:Sachin Kumar

Motivation

• Build a language representation system that can be used to
solve different NLP tasks.

• How to build: pretraining on an unlabeled corpus

• How to solve: finetuning on a task-specific labeled dataset

56:Sachin Kumar

BERT

Bidirectional Encoder
Representation from Transformer
(BERT):
- A stack of multiple transformer

encoders
- BERT is a fast bidirectional

model trained to understand
“context”

:Sachin Kumar 57

Method

Overview of two steps of training BERT:

- Pre-training:
- Goal: Understanding features in representation space

- Trains model on unlabeled data over different pre-training tasks (self-

supervised learning)

- Fine-tuning:
- Goal: Make pre-trained model usable in downstream tasks

- Initialized with pre-trained model parameters

- Fine-tuned model parameters using labeled data from downstream tasks

58Devlin, 2018. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding:Sachin Kumar

Method

Input:
- Token: pre-trained token vocabs (“WordPieces”: 30K vocabs/tokens)

- [CLS]: token beginning sentence, [SEP]: token ending sentence
- Segment: sentence number encoder to vectors

- Position: position of words within that sentence
- => Preserve ordering sentence inputs for BERT => Robust across downstream tasks

59:Sachin Kumar

Method

Pre-training BERT:
- Task #1: Masked Language Model

- Inputs: The [Mask1] State University is located
in [Mask2] city (E)

- Outputs: [Mask1] = Ohio, [Mask2] = Columbus
(C, T)

- => Helps understand bi-directional context
- Task #2: Next Sentence Prediction

- Inputs:
- A: Ohio State is a university (E)
- B: It is located in Columbus (E)

- Outputs:
- Yes: Sentence B follows sentence A (C = 1)

- => Help understand context across different
sentences

- Jointly training as a multi-task classification
model

60: Sachin Kumar

Method

Pre-training BERT: Dataset

Bookscorpus + English Wikipedia
(3.3B words)

61: Sachin Kumar

Method

Fine-tuning BERT:
- Replace final layer with a task

specific linear layer (classification
head)

- Reformat different tasks as
sequence or token level
classification tasks

- Example in Questions Answering:
- Inputs: Question, Paragraph
- Outputs: start and end words that

encapsulate the answer

62:Sachin Kumar

Experiments

Experimental Settings:

- Models:
- BERT_base (#transformer blocks L = 12,

#hidden size H = 768, #self-attention heads A

= 12): 110M params

- BERT_large (L =24, H = 1024, A = 16): 340M

params

- Fine-tuning on 11 NLP tasks over GLUE,

SQuAD v1.1, SQuAD v2.0, SWAG dataset

:Sachin Kumar 63

Results

64:Sachin Kumar

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

65

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

:Sachin Kumar

Ablation Studies

66:Sachin Kumar

BERT is effective for both fine-tuning

and feature-based approaches

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Ablation Studies

67: Sachin Kumar

Pre-training Tasks mattersThe deeper model, the better generalization

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Summary

- Based on Transformer, BERT is a fast and bidirectional pre-trained

model for NLP tasks

- Training BERT includes 2 steps:
- Pretraining: use self-supervised techniques to build good representation

space

- Fine-tuning: make use pre-trained representation for downstream tasks

- BERT archives SOTA across many tasks:
- Proving its context understanding in NLP

- Showing a good pre-trained encoder for downstream tasks

: Sachin Kumar 68

Table of contents (Reviewers)

1. Brief Summary of BERT

2. Reviewer Comments

3. Conclusion and Discussion

: Sachin Kumar 69

Legends

Positive Point

Critical Point

The aim of peer review is to provide authors with constructive
feedback from subject experts, so that they can make
improvements to their manuscript.

Brief Summary of BERT

What is BERT?

A predictive language Model

that takes into account bi-

directional context.

How ?

Masked Language

Modelling
: Sachin Kumar 70

Generative
pretrained
Transformer: GPT – 3

Bidirectional Encoder
Representation from
Transformers (BERT)

General

Problem in defining bi-
directional context with
models that are defined to
predict next given past.

Reviewers Comments

https://bionic-reading.com/

: Sachin Kumar 71Just, Marcel Adam and Patricia A. Carpenter. “A theory of reading: from eye fixations to
comprehension.” Psychological review 87 4 (1980): 329-54 .

• The research

indicates brain reads

faster when pseudo

masked

• UNIDIRECTIONAL!!

• Hence, BERT is

loosely doing

something similar to

how brain does it.

• BUT it used LTR

and RTL?

• Does our brain look

at the future context

while understanding

language?

Background Comments

Reviewers Comments

: Sachin Kumar 72

• BERT trained on the BooksCorpus, a much larger pretraining corpus than GPT

and ELMo (their baselines). Why not compare on equal grounds?

• Pretraining is a resource intensive process – how can others reproduce your

results?

Reviewers Comments

: Sachin Kumar 73

• Overall, BERT shows great improvements over

all the baselines

• BUT curious as to why BERT never mentioned

WNLI task results.

- they claim based on the FAQs that

WNLI did not perform well because of the

dataset mismatch BUT they mention QQP.

- Curious about the LM performance on

the WNLI task. Is the bi-directional context

confusing the model for the WNLI?

Reviewers Comments

: Sachin Kumar 74

● Why not a more contextually heavy task such as the
Argument Reasoning Comprehension Task(ARCT)

ARCT snippet

Reviewers Comment

word-piece tokenizer concept

: Sachin Kumar 75

Reviewers Comments

: Sachin Kumar 76

• Over parameterized and no analysis on the inference time

• Effects of Increase/decrease in number of attention heads and its effects

on the accuracy of the NLP tasks.

Conclusion (Gist of other Comments)

: Sachin Kumar 77

High Performance. Very compute Intensive.

Truly bidirectional context Unfair comparison to other baselines

It is slow to train because it is big and there
are a lot of parameters to update.

The objectives have theoretical foundations
in how humans learn

Certain critical tasks like WNLI are ignored

The tokenizer makes the vocabulary open Limited analysis

Journey of BERT

: Sachin Kumar

Last week...

• What problem was RNN trying to solve?

: Sachin Kumar

Last week...

• What problem was RNN trying to solve?
• (Conditional) Language Model

Last week...

• What problem was RNN trying to solve?
• Conditional Language Modeling

• What were the issues with Recurrent Neural Networks?

: Sachin Kumar

Last week...

• What problem was RNN trying to solve?
• Conditional Language Modeling

• What were the issues with Recurrent Neural Networks?
• "Recurrent computation is slow"

• Long sequences could result in parts of the input being forgotten.

: Sachin Kumar

What Inspired BERT?

Timeline

ELMo, ULMFit01

1735-1780, 1997

Transformer02

2017

BERT0

3

2019

ALBERT, T5

and GPT2
0

5

2020

ALBERT: A Lite BERT

• Why ALBERT

• How ALBERT works

• Performance ALBERT v.s. BERT

Why ALBERT

• The problems in BERT:
• Memory limitation

• Model parallelization

• Clever management

• Communication overhead
• ALBERT incorporates 2 parameter reduction techniques:

• Factorized embedding parameterization

• Cross layer parameter sharing

• Next Sentence Prediction (NSP) ineffectiveness
• Self-supervised loss for sentence-order prediction (SOP)

• Factorized embedding parameterization
• Recall BERT

• Embedding Size E = Hidden Layer Size H

• Question:
• E: context independent
• H: context dependent

• Reduce Embedding Parameters
• First project one-hot vectors into a lower dimensional embedding size E
• Then project it into hidden space
• O(V*H) O(V*E+E*H)
• E: 64, 128(best), 256, 768

How ALBERT works

How ALBERT works

• Cross-layer parameter sharing
• Share all parameters across layers

• Prevent the parameter from growth with the depth of network

• Weight-sharing has an effect on stabilizing network parameters

• Inter-sentence coherence loss
• Why NSP ineffectiveness

• Lack of difficulty as a task

• NSP conflates topic prediction and coherence prediction in a single task

• Topic prediction is much easier

• ALBERT: sentence order prediction (SOP) loss
• Avoid topic prediction

• Focuses on modeling inter-sentence coherence

How ALBERT works

Performance ALBERT v.s. BERT
Factorized embedding parameterization

Performance ALBERT v.s. BERT
Cross-layer parameter sharing

T5

92

T5: Main Idea

• Encoder Decoder Variant of BERT
○ Encoder Input: Masked Sequence
○ Decoder Output: Full unmasked

sequence

• Why?
○ More Flexibility
○ Can easily finetune for sequence

to sequence tasks like translation
and summarization.

93

Pretraining Data

• Colossal Cleaned Common
Crawl: 156B tokens compared
to 33B for BERT

• Sizes similar to BERT

94

Language Models are Unsupervised Multitask
Learners (GPT2)

95

GPT-2: Main Idea

• Train a unidirectional language model with a next-token
prediction objective (the OG language model)

• Also known as causal or autoregressive language models

• Use case: same as BERT/T5 but focused on generating text
• But T5 can also generate text

• Yes, but it is trained to denoise, not as a language model

• Can we train a T5 like model with a next token prediction objective
• Yes—check prefix LM

96

GPT-2: Why?

• Much simpler pretraining objective than masked/denoising LMs
– way more sample efficient, easier to scale

• Largest size of BERT-like models (less than 1B) << Largest size of GPT like
models (>500B)

• Works for several tasks without finetuning
• Zero shot capabilities

97

GPT-2: Zero-shot capabilities

• GPT-2 achieves state-of-
the-art scores on a variety
of domain-specific
language modeling tasks
(perplexity).

98

GPT-2: Zero-shot capabilities

99

• We can generate from GPT-
2 by sampling from its
underlying distribution

• One of the first models to
show highly fluent outputs

Controversy

100

Exploration: How do we make the models smaller ?

● Post Training: Are all model parameters effectively getting
utilized? Exploring ideas related to pruning neural networks

● Training from Scratch: Can we use knowledge distillation?
○ Student-Teacher training where a teacher network adds its error to the

student’s loss function, thus, helping the student network to converge

to a better solution.

101Sachin Kumar

Exploration: Does pretraining work well in other
languages?

● Train BERT/GPT2 in languages from different families and

writing scripts. Compare performance differences?
○ How much data is needed to achieve good performance?

● Train a multilingual model capable of working in multiple

languages at the same time.

102

Exploration: Can masked prediction be applied to
other modalities?

● Train BERT/GPT2 in languages from different families and

writing scripts. Compare performance differences?

● Train a multilingual model capable of working in multiple

languages at the same time.

103

Questions?

104

Logistics - FQA

• How many papers in total do I need to present throughout the
semester?

Logistics - FQA

• How many papers in total do I need to present throughout the
semester?

Each student will present for each role once.

Logistics -
FAQ
• What if I am presenting but having trouble understanding some parts of the

paper? Will I get penalized?

Logistics -
FAQ
• What if I am presenting but having trouble understanding some parts of the

paper? Will I get penalized?
• You are not the author of the paper. It is okay if you don’t completely understand every

detail!

• We will try to understand the details in discussions

• Also feel free to reach out to ask questions

	Slide 1: Transformers & Pretraining
	Slide 2: Logistics
	Slide 3: Paper presentations
	Slide 4: Recap from last class
	Slide 5: This Class: Transformer based Language Models
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Language Models: N-grams
	Slide 12: LMs w/ Recurrent Neural Nets
	Slide 13: Conditional LMs with RNNs
	Slide 14: RNNs: Cons
	Slide 15: RNNs
	Slide 16: RNNs with Attention
	Slide 17: RNNs with Attention
	Slide 18: RNNs with Attention
	Slide 19: Transformers
	Slide 20: Self-Attention
	Slide 21: Attention
	Slide 22: Defining Self-Attention
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: How to encode position information?
	Slide 30
	Slide 31: Properties of a good positional embedding
	Slide 32: Absolute position embeddings
	Slide 33: Functional position embeddings
	Slide 34: Sinusoidal Embeddings: Intuition
	Slide 35: Variants of Positional Embeddings
	Slide 36: Self-Attention: Back to Big Picture
	Slide 37: Self-Attention
	Slide 38: Multi-Headed Self-Attention
	Slide 39: Variants of attention
	Slide 40: How Do We Make it Deep?
	Slide 41: Feed forward layer
	Slide 42: A transformer block
	Slide 43: Transformer stack
	Slide 44: Encoder-Decoder Architectures
	Slide 45: Encoder-Decoder Architectures
	Slide 46: Transformer [Vaswani et al. 2017]
	Slide 47: Transformers as machine translation models
	Slide 48: Impact of Transformers
	Slide 49: Impact of Transformers
	Slide 50: Transformer LMs + Scale = LLMs
	Slide 51: Large Language Models
	Slide 52: Transformers - Summary
	Slide 53: Questions
	Slide 54: Pretraining / Finetuning BERT / GPT2 / T5
	Slide 55: BERT: Motivation
	Slide 56: Motivation
	Slide 57: BERT
	Slide 58: Method
	Slide 59: Method
	Slide 60: Method
	Slide 61: Method
	Slide 62: Method
	Slide 63: Experiments
	Slide 64: Results
	Slide 65
	Slide 66: Ablation Studies
	Slide 67: Ablation Studies
	Slide 68: Summary
	Slide 69: Table of contents (Reviewers)
	Slide 70: Brief Summary of BERT
	Slide 71: Reviewers Comments
	Slide 72: Reviewers Comments
	Slide 73: Reviewers Comments
	Slide 74: Reviewers Comments
	Slide 75: Reviewers Comment 🟢 word-piece tokenizer concept
	Slide 76: Reviewers Comments
	Slide 77: Conclusion (Gist of other Comments)
	Slide 78: Journey of BERT
	Slide 79: Last week...
	Slide 80: Last week...
	Slide 81: Last week...
	Slide 82: Last week...
	Slide 83: What Inspired BERT?
	Slide 84: Timeline
	Slide 85: ALBERT: A Lite BERT
	Slide 86: Why ALBERT
	Slide 87: How ALBERT works
	Slide 88: How ALBERT works
	Slide 89: How ALBERT works
	Slide 90: Performance ALBERT v.s. BERT Factorized embedding parameterization
	Slide 91: Performance ALBERT v.s. BERT Cross-layer parameter sharing
	Slide 92: T5
	Slide 93: T5: Main Idea
	Slide 94: Pretraining Data
	Slide 95: Language Models are Unsupervised Multitask Learners (GPT2)
	Slide 96: GPT-2: Main Idea
	Slide 97: GPT-2: Why?
	Slide 98: GPT-2: Zero-shot capabilities
	Slide 99: GPT-2: Zero-shot capabilities
	Slide 100: Controversy
	Slide 101: Exploration: How do we make the models smaller ?
	Slide 102: Exploration: Does pretraining work well in other languages?
	Slide 103: Exploration: Can masked prediction be applied to other modalities?
	Slide 104: Questions?
	Slide 105: Logistics - FQA
	Slide 106: Logistics - FQA
	Slide 107: Logistics - FAQ
	Slide 108: Logistics - FAQ

