Efficiency

CS 5539: Advanced Topics in Natural Language Processing

https://shocheen.github.io/courses/advanced-nlp-fall-2024



Logistics

e Have you formed your course project teams?
o Project proposal deadline: September 30



Goal for today’s class

How to train/use LLMs with a low compute budget

Part |: Efficient fine tuning techniques (LORA)

Part Il: LLM.int8() — quantizing LLM parameters to take less memory



Part |: Parameter Efficient Finetuning



LoRA - Stakeholder

: Suchit Gupte



Finetuning yields performance

@ Method | MNLI-m (Val. Acc./%) RTE (Val. Acc./%)

GPT-3 Few-Shot 40.6 69.0
GPT-3 GPT-3 Fine-Tuned 89.5 85.4
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Existing finetuning techniques

Adapter tuning

Transformer
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Existing finetuning techniques

Adapter tuning
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Existing finetuning techniques

Adapter tuning Prefix tuning
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Existing finetuning techniques

Adapter tuning
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Prefix tuning

Prefix
(Translation)

Prefix-tuning
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Summarization)
1

Transformer (Pretrained)
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name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)
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Suboptimal performance



What is LORA?

A method of fine-tuning large pre-trained models by decomposing weight matrices

Pretrained LMs have a low
intrinsic dimension

INTRINSIC DIMENSIONALITY EXPLAINS THE EFFEC-
TIVENESS OF LANGUAGE MODEL FINE-TUNING

Armen Aghajanyan, Luke Zettlemoyer, Sonal Gupta
Facebook
{armenag, 1sz, sonalgupta}@fb.com

ABSTRACT

Although pretrained language models can be fine-tuned to produce state-of-the-
art results for a very wide range of language understanding tasks, the dynamics
of this process are not well understood, especially in the low data regime. Why
can we use relatively vanilla gradient descent algorithms (e.g., without strong reg-
ularization) to tune a model with hundreds of millions of parameters on datasets
with only hundreds or tt ds of labeled ? In this paper, we argue
that analyzing fine-tuning through the lens of intrinsic dimension provides us with
empirical and theoretical intuitions to explain this remarkable phenomenon. We
empirically show that common pre-trained models have a very low intrinsic di-
mension; in other words, there exists a low dimension reparameterization that is
as effective for fine-tuning as the full parameter space. For example, by optimiz-
ing only 200 trainable parameters randomly projected back into the full space, we
can tune a RoOBERTa model to achieve 90% of the full parameter performance
levels on MRPC. Furthermore, we empirically show that pre-training implicitly
minimizes intrinsic dimension and, perhaps surprisingly, larger models tend to
have lower intrinsic dimension after a fixed number of pre-training updates, at
least in part ining their extreme i . Lastly, we connect intrinsic
di ionality with low di ional task rep ions and ion based
generalization bounds to provide intrinsic-dimension-based generalization bounds
that are independent of the full parameter count.
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What is LORA?

A method of fine-tuning large pre-trained models by decomposing weight matrices

Pretrained LMs have a low
intrinsic dimension

Low rank decomposition

INTRINSIC DIMENSIONALITY EXPLAINS THE EFFEC-
TIVENESS OF LANGUAGE MODEL FINE-TUNING

Armen Aghajanyan, Luke Zettlemoyer, Sonal Gupta
Facebook
{armenag, 1sz, sonalgupta}@fb.com

ABSTRACT

Although pretrained language models can be fine-tuned to produce state-of-th

art results for a very wide range of language understanding tasks, the dynamics
of this process are not well understood, especially in the low data regime. Why
can we use relatively vanilla gradient descent algorithms (e.g., without strong reg-
ularization) to tune a model with hundreds of millions of parameters on datasets
with only hundreds or th ds of labeled les? In this paper, we argue
that analyzing fine-tuning through the lens of intrinsic dimension provides us with
empirical and theoretical intuitions to explain this remarkable phenomenon. We
empirically show that common pre-trained models have a very low intrinsic di-
mension; in other words, there exists a low dimension reparameterization that is
as effective for fine-tuning as the full parameter space. For example, by optimiz-
ing only 200 trainable parameters randomly projected back into the full space, we
can tune a RoBERTa model to achieve 90% of the full parameter performance
levels on MRPC. Furthermore, we empirically show that pre-training implicitly
minimizes intrinsic dimension and, perhaps surprisingly, larger models tend to
have lower intrinsic dimension after a fixed number of pre-training updates, at

least in part ing their extreme i Lastly, we connect intrinsic
i i ity with low di i task ions and ion based
generalization bounds to provide intrinsic-di ion-based lization bounds

that are independent of the full parameter count.
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What is LORA?

A method of fine-tuning large pre-trained models by decomposing weight matrices

Weight update in regular finetuning
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What is LORA?

A method of fine-tuning large pre-trained models by decomposing weight matrices

Weight update in regular finetuning

N Assumption:
T If pretrained weights are low rank, weight
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What is LORA?

A method of fine-tuning large pre-trained models by decomposing weight matrices

Assumption: If pretrained weights are low rank, weight update also must be low rank

Weight update in regular finetuning Weight update in LoRA

LoRA matrices A and B
approximate the weight /v v\
/:'_\ update matrix AW +

Pretrained
weights

Pretrained

weights IT'_,/ The inner dimension r
is a hyperparameter
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What is LORA?

A method of fine-tuning large pre-trained models by decomposing weight matrices

Assumption: If pretrained weights are low rank, weight update also must be low rank

Weight update in regular finetuning Weight update in LoRA

LoRA matrices A and B
approximate the weight /1 \
/:|_\ update matrix AW +

Pretrained
weights

Pretrained

weights L——1 — The inner dimension r
is a hyperparameter

Modified forward pass
h=Wyx + AWx = Wyx + BAx
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Performance on GLUE benchmark

#.: Suchit Gupte

Model & Method |# Trainable

Parameters| MNLI SST-2 MRPC CoLA QNLI QQP RTE STS-B Avg.
RoBpase (FT)* 125.0M| 87.6 948 90.2 63.6 92.8 919 78.7 91.2 864
RoBpase (BitFit)* 0.IM| 84.7 93.7 92.7 62.0 91.8 84.0 81.5 90.8 85.2
RoByse (Adpt®)* 03M|87.140 94.2; 885411 60.844 93.11; 9021 71.5457 89.7L3 844
RoByase (AdptD)* O9M (87311 94.7+3 884411 62.649 93.0+2 90.640 759422 90.34; 85.4
RoBupase (LORA) 0.3M|87.5+3 9514, 89.7+7 634415 93.3.3 90.8+; 86.61.7 91.5.,
RoBiaree (FT)* 355.0M| 90.2 96.4 90.9 68.0 947 92.2 86.6 924 RR9
ROBiage (LORA) 0.8M|90.6:, 96.2+5 9091, 68.2119 94.913 91.61, 87.41,5 92.615

ROBiarge (Adpt")f
ROBiarge (Adpt)t
ROBiarge (Adpt™)f
ROBiarge (Adpt™)f
RoBiage (LORA)T

3.0M
0.8M
6.0M
0.8M
0.8M

90.24+3 96.1+3 90.2+7 68.3+110 94.8+> 9194 ; 83.8420 92.1+7 884
90.5+3 96.6+> 89.74+12 67.8425 94.84+3 9174+, 80.1429 91944 87.9
899415 96213 88. 7429 6654144 94745 92.14+1 834411 91.0417 87.8
90.34+3 96.3+5 87. 7417 66.3420 94.7+2 91541 729429 91.54+5 864
90.612 96245 90.2110 682410 94.813 91.64, 852411 92345

DeB XXL (FT) &
DeBxx. (LoRA)

1500.0M
4. M

918 972 920 720 960 927 939 929 91.1
91.9+2 969+, 92.616 724111 96011 929+ 949+ 93.0:




Performance on GPT-3

#.: Suchit Gupte

# Trainable | WikiSQL MNLI-m SAMSum
Model&Method Parameters | Acc. (%) Acc. (%) R1/R2/RL
GPT-3 (FT) 175,255.8M 73.8 89.5 52.0/28.0/44.5
GPT-3 (BitFit) 14.2M 71.3 91.0 51.3/27.4/43.5
GPT-3 (PreEmbed) 3.2M 63.1 88.6 48.3/24.2/40.5
GPT-3 (PreLayer) 20.2M 70.1 89.5 50.8/27.3/43.5
GPT-3 (Adapter™) 7.1M 71.9 89.8 53.0/28.9/44.8
GPT-3 (AdapterH) 40.1M 73:2 91.5 53.2/29.0/45.1
GPT-3 (LoRA) 4.7 73.4 91.7 53.8/29.8/45.9
GPT-3 (LoRA) 37. M 74.0 91.6 53.4/29.2/45.1

# Trainable
parameters

0.0025% v
0.02% v



Scalability - Performance vs # Parameters
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Applying LORA to transformers

]

( Add&INorm )
[ MLPs ]

([ Add&Norm |
Multi%head Weights - Que"y, Key, Value
[ Attention J—’ and Output matrices
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Applying LORA to transformers

|

Add & Norm |

I

Freeze

A

]

Multi-head

| Add & Norm
I N
Attention
h
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Weights - Query, Key, Value
and Output matrices

l

Apply LORA




Applying LORA to transformers

|

Add & Norm |
|
Freeze
3
[ Add&Norm |
———— | Weights - Query, Key, Value
Atter:tion ”1 and Output matrices
l WHAT IS THE
Apply LORA ——> OPTIMAL RANK r
FOR LORA?
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Applying LORA to transformers

|
Add & Norm |

I

Freeze

3

([ Add &Norm |
I

Multi-head

Attention

#.: Suchit Gupte

Weights - Query, Key, Value
and Output matrices

| WeightType |r=1 r=2 r=4 r=8 r=64
o W, 68.8 69.6 70.5 70.4 70.0
WikiSQL(+0.5%) W, Wy 73.4 73.3 1353 73.8 73.5
W, Wi, Wy, W, | 741 737 740 740 739
W, 90.7 90.9 91.1 90.7 90.7
MultiNLI (£0.1%) We, Wy 91.3 014 91.3 91.6 914
W, Wi, Wy, Wy, | 912 917 91.7 91.5 914

l WHAT IS THE

Apply LORA ——> OPTIMAL RANK r

FOR LORA?



LORA - Reviewer

Alex Felderean



Summary

- Low-Rank Adaptation (LoRA) for reducing parameters during fine-tuning
- Demonstrates:
- parameter reduction by 10,000x
- GPU memory requirement by 3x
- Compared to other common methods:

hi ]

- no added inference latency (vs adapters)
- on-par or better practical performance
- higher training throughput




Strengths and Weaknesses

Originality: ~ + Parallel, NOT sequential modules used throughout fine-tuning
+ Reduces time significantly by cutting out downstream work
- Lacks in-depth limitations of method in practicality
Quality: + Graphics and explanations clear, good line of reasoning
Clarity: + Sections well organized and labeled to follow logic
- Could use more visuals, especially for building context
Significance: + Very powerful for resource-limited environments (say, only 1 GPU)
~ Pros and cons shift depending on chosen models & resources

- Full fine-tuning is still preferred, esp. for larger datasets



Questions

Despite its generalization, where do we see LoRA tuning not converging
roughly to training the original model? How does that limit the performance
of LoRA?

How have developments using the LORA method paced with
improvements of other fine-tuning methods? What limitations have been
addressed with that method that affect LoORA's usefulness?

The paper roughly tested GPT-3's 170B parameters. With models
suspected to break the 1T parameter mark, does LoRA’s basis of
generalization still hold the same impact in performance?



Ratings

Soundness: 3/4 (relatively well supported with evidence)
Presentation: 4/4 (very easy to follow and understand)

Contribution: 4/4 (grown into a popular method, impactful to Al field)
Overall: 8/10 (Strong Accept)

Confidence: 4/5



LoRA - Archaeologist

By Yifei Li, 09/16/2024
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Background

® Why parameter-efficient fine-tuning (PEFT)?

o Fine-tuning on a better pre-trained model > directly train a task-specific model
o Models are getting bigger! Training/inference/deployment...
m 15 (330M, 770M, 3B, 11B)
m  GPT-2 (330M, 774M, 1.5B) — GPT-3 (175B) — ChatGPT, GPT-4, GPT-40, 01 (?)

e How to *parameter-efficiently* do fine-tuning?

o The existence of Low-Rank Structures in Deep Learning
o Techniques for parameter-efficient fine-tuning



Low-Rank Structures in Deep Learning

e Many machine learning problems have certain intrinsic low-rank structure
o https://arxiv.org/pdf/1906.05392
o  Why N(parameters) >> N(examples), but still generalizable?
o Low-rank information space vs. nuisance space

Oymak, Samet, et al. "Generalization guarantees for neural networks via harnessing the low-rank structure of the jacobian." arXiv preprint arXiv:1906.05392
(2019).


https://arxiv.org/pdf/1906.05392

Low-Rank Structures in Deep Learning

e SVD on Jacobian matrix: low-rank information space vs. nuisance space
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Oymak, Samet, et al. "Generalization guarantees for neural networks via harnessing the low-rank structure of the jacobian." arXiv preprint arXiv:1906.05392
(2019).



Low-Rank Structures in Deep Learning

e SVD on Jacobian matrix: low-rank information space vs. nuisance space
o Few but large eigenvalues vs. Many but small eigenvalues
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Low-Rank Structures in Deep Learning

e SVD on Jacobian matrix: low-rank information space vs. nuisance space

o Few but large eigenvalues vs. Many but small eigenvalues
o Model converges and generalizes fast in information space
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Low-Rank Structures in Deep Learning

e SVD on Jacobian matrix: low-rank information space vs. nuisance space

o Few but large eigenvalues vs. Many but small eigenvalues
o Model converges and generalizes fast in information space
o Model converges slowly in nuisance (noisy) space and affects generalization
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Oymak, Samet, et al. "Generalization guarantees for neural networks via harnessing the low-rank structure of the jacobian." arXiv preprint arXiv:1906.05392
(2019).



Low-Rank Structures in Deep Learning

e SVD on Jacobian matrix: low-rank information space vs. nuisance space

Few but large eigenvalues vs. Many but small eigenvalues

Model converges and generalizes fast in information space

Model converges slowly in nuisance (noisy) space and affects generalization
That’'s why early-stopping may work

4.5 T 3
s ‘m,)
e —— ELI(’U)T)

|
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Iterations (7) Iterations (1)

o O O O

[V}

Test error
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—_

(a) Total test error (b) Test error along information and nuisance spaces

Oymak, Samet, et al. "Generalization guarantees for neural networks via harnessing the low-rank structure of the jacobian." arXiv preprint arXiv:1906.05392
(2019).
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Low-Rank Structures in Deep Learning

e Explicitly integrates low-rank matrix factorization during training

o SVD, PCA, top-k eigenvalues
o Directly use factorized matrices to fit NN layers
m Sainath et al., 2013; Povey et al., 2018 ... (see “related works” in the paper)

e \Why not incorporate this into the fine-tuning stage?
o Alow-rank update to a frozen model for adaptation to downstream tasks



PEFT Techniques

e Where do the efficient parameters come from?
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e Where do the efficient parameters come from?

o Additional inner modules?
m Adapter-tuning: https://arxiv.org/pdf/1902.00751
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o Additional inner modules?
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o Embedding tokens?
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PEFT Techniques

e Where do the efficient parameters come from?
o Additional inner modules?
m  Adapter-tuning: https://arxiv.org/pdf/1902.00751
o Embedding tokens?
m  Prefix-tuning: https://arxiv.org/pdf/2101.00190
o  Sub-networks?
m  Child-tuning: https://arxiv.org/pdf/2109.05687
o Additional input/output layers?
m Input-tuning: https://arxiv.org/pdf/2203.03131



https://arxiv.org/pdf/1902.00751
https://arxiv.org/pdf/2101.00190
https://arxiv.org/pdf/2109.05687
https://arxiv.org/pdf/2203.03131

PEFT Techniques (1): Adapters

e Inserting adapters between NN layers (i.e. submodules between layers)
o Rebuffi et al., 2017; Houlsby et al., 2019; Lin et al., 2020
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PEFT Techniques (1): Adapters
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Inserting adapters between NN layers (i.e. submodules between layers)

o Rebuffi et al., 2017; Houlsby et al., 2019; Lin et al., 2020
o Better than fine-tuning only top layers!
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PEFT Techniques (1): Adapters

e Inserting adapters between NN layers (i.e. submodules between layers)
o Rebuffi et al., 2017; Houlsby et al., 2019; Lin et al., 2020
o Better than fine-tuning only top layers!

Extend model length and
increase inference latency
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PEFT Techniques (2): P-Tuning (P for Prefix or Prompt)

e Prefix-tuning (Stanford in Jan. 2021)
o hitps:/arxiv.org/abs/2101.00190

e P-tuning (Tsinghua in Mar. 2021)
o https://arxiv.org/pdf/2103.10385

e Prompt-tuning (Google in Apr. 2021)
o  https:/arxiv.org/pdf/2104.08691
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PEFT Techniques (2): P-Tuning (P for Prefix or Prompt)

e Prefix-tuning (Stanford in Jan. 2021)
o hitps:/arxiv.org/abs/2101.00190

Optimizing
continuous prompt tokens

e P-tuning (Tsinghua in Mar. 2021)
o https://arxiv.org/pdf/2103.10385

e Prompt-tuning (Google in Apr. 2021)
o  https:/arxiv.org/pdf/2104.08691
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Prefix-tuning

Fine-tuning

Transformer (Translation)
|j¥ [ 1 [ 1 [ 1 . Il BN .

Transformer (Summarization)
. B = = ==

Transformer (Table-to-text)

rnnniniii

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)

Prefix
(Translation)

' Prefix
(Summarization)
1

Prefix
(Table-to-text)

Prefix-tuning

Transformer (Pretrained)

I LI 8L LY

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)

Li, Xiang Lisa, and Percy Liang. "Prefix-tuning: Optimizing continuous prompts for generation." arXiv preprint arXiv:2101.00190 (2021).



Prompt-tuning

Pre-trained 1
Model Tuning Model | Prompt Tuning
& (11B params) y :
al 4 N Mixed-task
Task A 22 Task AModel | | Batch
Batch (11B params) I AT a7
S 7 C| c1 Pre-trained
b1 4 N | LB B[ b1 Model
Task B | Task B Model | | oo (11B params)
Batch | (11Bparams) | 1
b “ | Task Prompts
= 4 N | (20K params each)
Task C [c2 Task C Model | |
Batch (11B params) I
\. J |

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The power of scale for parameter-efficient prompt tuning." arXiv preprint arXiv:2104.08691 (2021).



—®-— Model Tuning —m- Prompt Design
Model Tuning (Multi-task)  =x— Prompt Tuning
100

Prompt-tuning . :

—

& 80
Ny 7
_ Pre-trained | _ g 7 / /
Model Tuning Model | Prompt Tuning 3 —
| (11B params) | 1 w o
al ( ) : Mixed-task 56 /
Task A |22 Task AModel | | Batch 108 1010 101
Batch (1 1B params) I x 37 Model Parameters
~ 7 Cl ¢ Pre-trained
] ( N | LB B[ bf Model
Task B | Task B Model | 1| é 2% (11B params)
Batch | (11Bparams) | 1
~ “ 1 Task Prompts
— 4 \ | (20K params each)
Task C [c2 Task C Model | |
Batch (11B params) !
\- J |

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The power of scale for parameter-efficient prompt tuning." arXiv preprint arXiv:2104.08691 (2021).



Input-Tuning

e Adding a Input-Adapter after inputs

e Portable: consider frozen PLM as a black box (Output)
Retrieve the first song.
4 4 4
Frozen PLM
o, 3, 3 — | . v S e S——
! Prompt Input-Adapter ! Trainable Modules
----------------- ) g g g g gy S R
Sort(datePublished asc of MusicRecording())[1];

(Input)

An, Shengnan, et al. "Input-tuning: Adapting unfamiliar inputs to frozen pretrained models." arXiv preprint arXiv:2203.03131 (2022).



P-tuning

e Discrete prompt words — Continuous trainable embedding tokens

i gy S S S g g i S g gy

v Discrete rewards

I Prompt Generator

R b b b

The capital of Britain is

[MASK]

Input embedding e(']ihe) e(ca%ital) e(%)f) e(Brita.in) e(iis) e([M_/:XSK])

Pre-trained Language Model
(GPT, BERT, ...)

(—
(a) Discrete Prompt Search

_________________________________________

'
Input embedding  hq --- h; e(capital) e(Britain) h;iq---h,, e([MASK])
p e ho o iy ( P ) : 1 m

Pre-trained Language Model
(GPT, BERT, ...)

(b) P-tuning

Liu, X, Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z., & Tang, J. (2023). GPT understands, too. Al Open.



PEFT Techniques (2): P-Tuning (P for Prefix or Prompt)

e Prefix-tuning (Stanford in Jan. 2021)
o hitps:/arxiv.org/abs/2101.00190

Optimizing
continuous prompt tokens

e P-tuning (Tsinghua in Mar. 2021)
o https://arxiv.org/pdf/2103.10385

Reduce the model’s

e Prompt-tuning (Google in Apr. 2021) usable sequence length

o  https://arxiv.org/pdf/2104.08691



https://arxiv.org/abs/2101.00190
https://arxiv.org/pdf/2103.10385
https://arxiv.org/pdf/2104.08691

Summary

e Low-Rank Structures in Deep Learning
o  Why they exist and work



Summary

e Low-Rank Structures in Deep Learning
o  Why they exist and work

e Techniques for parameter-efficient fine-tuning
o Source of tunable parameters: Adapters, Sub-networks, Continuous input embeddings, etc..
o Pros/Cons: inference latency / usable sequence length



Follow up ideas

7.2 WHAT IS THE OPTIMAL RANK r FOR LORA?

We turn our attention to the effect of rank r on model performance. We adapt {W,, W,},
{Wy, Wi, W, W_}, and just W, for a comparison.

| WeightType |r=1 r=2 r=4 r=8 r=64

» % 688 696 705 704 700
50 q

e W, W, 734 733 7371 138 T35

W, Wi, Wy, W, | 741 737 740 740 739

W, 9.7 909 9L1 907 907

MultiNLI (£0.1%) W, W, 913 914 913 916 914

W, Wi W, W, | 912 917 917 915 914

Table 6: Validation accuracy on WikiSQL and MultiNLI with different rank ». To our surprise, a
rank as small as one suffices for adapting both W, and W,, on these datasets while training W, alone
needs a larger . We conduct a similar experiment on GPT-2 in Section H.2.



AW =AXB

size:A=dXr,B=rXd

How to get optimal r?



Why performed well in downstream missions?

Although the ranks are different, their first few singular vector directions overlap
considerably.

They share a dimension and their normalized similarity is greater than 0.5.This
means that although the rank is lowthe fithess matrix still performs well in
downstream tasks.

-1.0
~0.8
0.6
0.4
0.2
0.0

PRENNERENYE "eHERdeseep TIEAERIE TEIAFEGE

8 76 543 21




r<<d

“We argue that increasing r does not cover a more meaningful subspace, which
suggests that a low-rank adaptation matrix is sufficient.”

We can calculate AW in every iterate progress

If AW begins to stabilize then reduce r.



Thanks!



Part |I: Quantization



LLM.int8()

8-bit Matrix Multiplication for Transformers at Scale

Stakeholder -- Zeyi Liao



Efficiency status quo

La rge La ng uage MOdeIS - sorted by billion parameters
5408 176B 100B 20B B
| 1 T
PaLM
/ ’. :‘ s ‘ ‘ ) GPT-NeoX
3 BLOOM i B ..
__ o

1. Accessible
a. Handy Repo:
Imdeploy(https://github.com/InternLM/Im
deploy)
b. Various Design: Grouped Attention
mechanism, Flashed Attention.
2. Time Cost
a. Speculative
Decoding(https://x.com/BeidiChen/stat
us/1826300342985711719).
Feature: High throughput, low latency etc..
3. Inference-scaling paradigm.


https://github.com/InternLM/lmdeploy
https://github.com/InternLM/lmdeploy
https://x.com/BeidiChen/status/1826300342985711719
https://x.com/BeidiChen/status/1826300342985711719

Where does the computation come from?

Memory Consumption
gpUu, I_ gpuy; : gPUy.1 Formulation S‘p:gi:’if’E:NTﬂe
. I .
R — J +
P, F T ﬁ - ,A;‘, 31.4G8
(2+K) ¥
Possg I I I 2P 16.6GB
P I I I R+2+ K)»*»w 1.5G8
o N,
A B B S il |
| wu Parameters v Gradients wu Optimizer States I
N ——
Training: Inference:
P t
ws Parameters w Gradients w Optimizer States ol

Qinghua Liu, https://arxiv.org/abs/2207.11912. Nice survey, check it out!

- Activation (less than computation from

Comm

Volume

1x

1x

1x

1.5x

parameters)


https://arxiv.org/search/cs?searchtype=author&query=Liu,+Q
https://arxiv.org/abs/2207.11912

Let's dive deeper into the
guantization



High Level illustration

Sign Range Precision

e
TENSOR FLOAT 32 (TF32) 'ﬂ_‘ﬂ

TF32 Precision

FP16

BFLOAT16

Models in bf16 only
need twice less
memory compared to
using fp32.

Quantization

Yet, you can not do quantization randomly,
you should do it reasonably. Otherwise,
model will lose its capability as model per se
is just matrix containing numerous numbers.



Absmax / Zero-point quantization

Absmax quantization

-3.0 0.1

~127 4

symmetry

qumnt = 1’()1111(1(

Xdoquant = 127

127

[max X[

max | X|

) Xquant

3.2

Zero-point quantization

Inputs

Outputs
127 -128 -1 127

asymmetry

255
max(X) — min(X)
zeropoint = —round(scale - min(X)) — 128

scale =

Somehow like
X quant = round (|scale | X Hzeropoint normalization?

Xquant — Zeropoint

X(loquanl — -
scale

https://medium.com/@sachinsoni600517/introduction-to-model-quantization-4effc7a17000



Absmax / Zero-point quantization

Zeropoint quantization shifts the input distribution into the full range [—127,127] by scaling
with the normalized dynamic range nd, and then shifting by the zeropoint zp,. With this affine
ransformation, any input tensors will use all bits of the data type. thus reducing the gquantization errc

isymimietric distributions. For example, for ReLU outputs, in absmax quantization all values in
whereas in zeropoint quantization the full [—127,127] ran Zeropoint
quantization 1s given by the following equations:




Absmax / Zero-point + Vector-wise quantization

LLM . t8 8-bit Vector-wise Quantization

AN ( ) e e s St
+ (1) Find vector-wise constants: Cy & Cx
L]
'
E X y B | c—cw
: 2]ala 1|0
E ofs]z 0|2
H 1|1]1]0 1|2

e 115 - 16 F16
X B | J "
137|183 0 °'2W H X
JaleE N g e S T R R v
1|2

1. View matrix multiplication as a sequence of independent inner products.
2. Compute scaling factor for each row of X and each column of W.
a. Robust to outlier.



Performance of quantization

emergence of —»

outlier features

Method : " - -
—— LLM.int8() : g —" Parameters 125M 13B 27B 6.7B 13B
—— 8-bit baseline , -

0.7 — 16-bit baseline /-.-—""' 32-bit Float 25.65 1591 14.43 [13.30 1245
g " : Int8 absmax 87.76 16.55 15.11 1459 19.08
i ’.;/"/ : Int8 zeropoint 56.66 1624 1476 1349 13.94
L Y : Int8 absmax row-wise 3093 17.08 1524 14.13 1649
2 v : Int8 absmax vector-wise 35.84 16.82 1498 |[14.13 1648
£os & : Int8 zeropoint vector-wise 25.72 1594 1436 |13.38 13.47
3 o |
= '

0.4 :

'
I
'
'

0.3
o = > & & -~ Q 2 &
O DN o ~ P & W
Parameters
Takes:
L

Vector-wise quantization is helpful but insufficient.




Why fail? Outlier features!
They empirically find and define outlier features.

They empirically find that certain calculation need more precision beyond Int8.

They empirically show that performance no more degrade!

Luckily, they find that outlier features is sparse and systematic in practice, thus LLM.int8() only need minor
additional overhead compared to pure Int8 quantization

LLM . | nt8( ) r8-bit Vector-wise Quantization

(1) Find vector-wise constants: C,, & Cx (2) Quantize (4) Dequantize
X 1 24— X1127/60 = X,g outX (C,®C,,)
EEE [EE) W WiLa2C) =W, T io7ri7 - Ol

3fo]3]2 10]-2]
1[1]a]e F . (3) Int8 Matmul

2 [as[ 11 [1]o] T 1 w X W = Out

X o [12]3 }e32 ﬂﬂ c 18 18 132
-1[37]-1}s3q 0 1o]2] X
P16 [3]2] S AN A A AT AN
2]

16-bit Decomposition

(1) Decompose outliers (2) FP16 Matmul

W_= Out

X
m H F16  F16 F16 Outrpls
[[] Regular values X E
F16
[[] outliers F16




How Define Outlier features

Layer O Layer 1 Layer 2
2 [45]|-1F17]-1 2 [45]|-1F17]-1 2 |45]|-1F17|-1
0 |12 3 63| 2 0 (12| 3 }63] 2 12| 3 }63| 2
-1|37|-1}83/ 0| |[-1|37|-1}83[0| |-1{37|-1[83]0

Find the dimension
Find dimensions containing value > 6.

b. Same feature appear in at least 25% layers within transformer.
Same feature appear in at least 6% of all sequence.

a.

C.

NOTE:

BTW, the feature here just
means the certain dimension,
not eigenvector after SVD.

Again, the defining the threshold is sort of heuristic, but it works, then it is
what it is.



Prove the existence of outlier features by some experiments

Rigorous setting!
4 models from OpenAl, 5 models from MetaAl, 1 from EleutherAl, 2 inference framework: Fairseq and huggingface.

|
100 o0
100 l- —— ® % layers affected |/
I 7= /
Vg o e % tokens affected |/
o } 8 ;‘
2 / @ emergence of /
v /1 = 80 :
& 80 [ © outlier features IR
© - —— ) /
2 I 5 . a"“ l
£ L~ | 5 yar
E A V& |
w0 ‘/“ ! 2 P |
S 40| /o : > 4 oz o |
© _—®
E i I = Ll g |
e s° | g T 9 &
b o o 20 !
o 20 [ | © .
1] . emergence of € '
+ | e (=
5 l/ outlier features 9 I
~
= : 9 1
& " 2 " & " 0 35 30 25 20 15
e C4 perplexit
Parameters in billions Perp y
(@) (b)

—

Yeah, larger models have more outlier features.
2. Maybe not because of the mere model size, but the perplexity (somehow
correlated with model size) is the determining factor.



Prove the existence of outlier features by some experiments

w =)
o o

e
(=]

Median feature outlier magnitude
N w
(=] (=]

-
o

emergenceof o | |
outlier features |

|
|
!
i
|
|
{
|
|
|
|
|
)

35 30

Median feature is too large!, So that

25

20 15

C4 perplexity

(a)

Outlier features count
N w E=3 w (=3}

-

/ @

I
I
|
*f
|
I
|
I
|
I
|
|

*  emergence of !
outlier features|

|

L

»

W
w

quantization doesn’t work. Recall that scale
is related the extreme values.

e eeeee 0o

._

30

25 20 15
C4 perplexity
(b)



Performance of Int8.LLM

Parameters 125M 1.3B 27B 6.7B 13B

32-bit Float 25.65 1591 1443 1330 1245
Int8 absmax 87.76 16.55 15.11 14.59 19.08
Int8 zeropoint 56.66 1624 1476 1349 1394
Int8 absmax row-wise 3093 17.08 1524 14.13 16.49
Int8 absmax vector-wise 3584 16.82 1498 14.13 1648
Int8 zeropoint vector-wise 25.72 1594 1436 13.38 1347
Int8 absmax row-wise + decomposition 3076 16.19 14.65 13.25 1246

Absmax LLM.int8() (vector-wise + decomp) 2583 1593 1444 13.24 1245
Zeropoint LLM.int8() (vector-wise + decomp) 25.69 1592 1443 13.24 1245

Takes:
1.  Zeropoint is better than Absmax in this LLM context, due to its attribute of being asymmetry.
2. When model size reachs to a certain point, even zeropoint with vector-wise quantization can not handle the extreme
magnitude well.
3. Using separate precision makes the performance great again.



Drawback? Yes, additional overhead

Time per token in Time per token in Time per token in
Number of milliseconds for milliseconds for milliseconds for
Precision parameters Hardware Batch Size 1 Batch Size 8 Batch Size 32
bf16 176B 8xA100 239 32 9.9
80GB
int8 176B 4xA100 282 37.5 10.2
80GB

Acceptable but not ideal, esp. for production level use.

https://huggingface.co/blog/hf-bitsandbytes-integration



LLM.Iint8() - Review

By Mona Gandhi - 09/16/24



Summary

/2:Mona Gandhi

Objective: Reduce the memory for
inference while retaining full precision.
Method:

o Developed procedure for Int8 matrix
multiplication.

o  Vector-wise Quantization.

o Mixed-precision Decomposition Scheme
— for outliers.

Show that by using LLM.int8(), they
can perform inference in LLMs with up
to 175B params w/o performance
degradation.

LLM ) | nt8( ) 8-bit Vector-wise Quantization

(1) Find vector-wise constants: CW& Cx (2) Quantize (4) Dequantize
* =
X Laec XF(127/C,) = X out (C®Cy)
2 [A]0] W W (127/C) = W, — s = out,
sphk| [
1 Fm ble] (3) Int8 Matmul
T B T w X, W,= Out
u u. C 18 18 132
E E X
FEle 16-bit Decomposition
(1) Decompose outliers (2) FP16 Matmul
W X W_=Out
B0 F16  Fl6 F16 out,
[[] Regular values X E
[] outliers F16 Rle

Figure 2: Schematic of LLM.int8(). Given 16-bit floating-point inputs X 1 and weights W f1¢, the
features and weights are decomposed into sub-matrices of large magnitude features and other values.
The outlier feature matrices are multiplied in 16-bit. All other values are multiplied in 8-bit. We
perform 8-bit vector-wise multiplication by scaling by row and column-wise absolute maximum of
C, and C,, and then quantizing the outputs to Int8. The Int32 matrix multiplication outputs Out;3,
are dequantization by the outer product of the normalization constants C, ® C,,. Finally, both outlier
and regular outputs are accumulated in 16-bit floating point outputs.



Reviewer Comments

@ Making huge models available to use with fewer resources.

@ Addresses outlier issues, performs experiments to show the importance of

their decomposition method.

/2:Mona Gandhi

Table 1: C4 validation perplexities of quantization methods for different transformer sizes ranging
from 125M to 13B parameters. We see that absmax, row-wise, zeropoint, and vector-wise quantization
leads to significant performance degradation as we scale, particularly at the 13B mark where 8-bit
13B perplexity is worse than 8-bit 6.7B perplexity. If we use LLM.int8(), we recover full perplexity
as we scale. Zeropoint quantization shows an advantage due to asymmetric quantization but is no
longer advantageous when used with mixed-precision decomposition.

Parameters 125M 13B 277B 6.7B 13B

32-bit Float 2565 1591 1443 1330 1245
Int8 absmax 87.76  16.55 15.11 1459 19.08
Int8 zeropoint 56.66 1624 1476 1349 1394
Int8 absmax row-wise 3093 17.08 1524 14.13 1649
Int8 absmax vector-wise 35.84 16.82 1498 14.13 1648
Int8 zeropoint vector-wise 2572 1594 1436 13.38 1347
Int8 absmax row-wise + decomposition 3076 16.19 14.65 13.25 1246

Absmax LLM.int8() (vector-wise + decomp) 2583 1593 1444 13.24 1245
Zeropoint LLM.int8() (vector-wise + decomp) 25.69 1592 1443 1324 1245




Reviewer Comments

O Why is the threshold set to 67

@ With Mixed-Precision Decomposition, zero point ~ absolute maximum,
however vector-wise still has an edge!

/2:Mona Gandhi

Table 1: C4 validation perplexities of quantization methods for different transformer sizes ranging
from 125M to 13B parameters. We see that absmax, row-wise, zeropoint, and vector-wise quantization
leads to significant performance degradation as we scale, particularly at the 13B mark where 8-bit
13B perplexity is worse than 8-bit 6.7B perplexity. If we use LLM.int8(), we recover full perplexity
as we scale. Zeropoint quantization shows an advantage due to asymmetric quantization but is no
longer advantageous when used with mixed-precision decomposition.

Parameters 125M 13B 2.7B 6.7B 13B

32-bit Float 2565 1591 1443 1330 1245
Int8 absmax 87.76  16.55 15.11 1459 19.08
Int8 zeropoint 56.66 1624 1476 1349 13.94
Int8 absmax row-wise 3093 17.08 1524 14.13 1649
Int8 absmax vector-wise 3584 16.82 1498 14.13 1648
Int8 zeropoint vector-wise 25772 1594 1436 13.38 1347
Int8 absmax row-wise + decomposition 30.76  16.19 14.65 13.25 1246

Absmax LLM.1nt8() (vector-wise + decomp) 2583 1593 1444 13.24 1245
Zeropoint LLM.int8() (vector-wise + decomp) 25.69 1592 14.43 13.24 1245




Reviewer Comments

O Addressed in limitations: tried only on int8(), what happens at larger scale is
unknown, does not focus on training and fine tuning.

O Why perplexity? And not other metrics for evaluation?

(O Maybe try reducing the size of the weight matrix, ignoring insignificant weights
— pruning?

/2:Mona Gandhi



Reviewer Comments

@ Has very significant broader impact!
© Wil certainly be useful for academic institutions specially.

@ Would be useful for having LLMs on smaller mobile devices, accessible to all

easily.

/2:Mona Gandhi



&Archaeologis‘r

LLM.int8(): 8-bit Matrix Multiplication
for Transformers at Scale

Tim Dettmers** Mike Lewis' Younes Belkada®+ Luke Zettlemoyer*

University of Washington*
Facebook Al Research'
Hugging Face’

ENS Paris-Saclay™

How was LLM.int8() inspired by previous work??

Hanane Moussa



&Archaeologisf

LLM.int8()

Dettmers et al. develop LLM.int8(), a two step quantization procedure:

e vector wise-quantization for most features using 8-bit matrix multiplication
(99.9%)
e mixed-precision decomposition for the emergent outliers using 16-bit (0.1%)

Allows inference in LLMs with up to 175B parameters without any performance
degradation.



Quantization of BERT models

e Q8BERT (2019) quantizes the
model's weights and
activations from 32-bit floating
point to 8-bit integer.

e 4x reduction in model size.

e Some performance loss.

QSBERT: Quantized 8Bit BERT

Ofir Zafrir Guy Boudoukh Peter Izsak Moshe Wasserblat
Intel AI Lab
{ofir.zafrir, guy.boudoukh, peter.izsak, moshe. wasserblat}@intel.com

&Archaeologisf

e (Q-BERT (2020) quantizes model
weights to 2-bit precision.

e Uses a mixed-precision approach
using a Hessian Matrix to
determine which parts of the
model are more sensitive to
quantization

e Some accuracy loss.

Q-BERT: Hessian Based Ultra Low Precision Quantization of BERT

Sheng Shen,'* Zhen Dong,'* Jiayu Ye,'* Linjian Ma,!' Zhewei Yao,'
Amir Gholami,' Michael W. Mahoney,' Kurt Keutzer'
!'University of California at Berkeley,

{sheng.s, zhendong, yejiayu, linjian, zheweiy, amirgh, mahoneymw, keutzer} @berkeley.edu



&Archaeologisf

Quantization of BERT models

e TernaryBERT (2020) quantizes e BinaryBERT (2021) further
model weights to ternary quantizes the model to binary
values (-1, 0, 1). values (1, -1)

e Model performance is
improved using knowledge
distillation from full-precision
BERT model

e Alsousesa
knowledge-distillation
approach.

BinaryBERT: Pushing the Limit of BERT Quantization

TernaryBERT: Distillation-aware Ultra-low Bit BERT
Haoli Bai!, Wei Zhang?, Lu Hou?, Lifeng Shang?,
Jing Jin%, Xin Jiang?, Qun Liu?, Michael Lyu', Irwin King!

Wei Zhang; Lu Hou; Yichun Yin; Lifeng Shang, Xiao Chen, Xin Jiang, Qun Liu ! The Chinese University of Hong Kong
Huawei Noah’s Ark Lab ?Huawei Noah’s Ark Lab, 3Huawei Technologies Co., Ltd.
{zhangwei379, houlu3, yinyichun, shang.lifeng, chen.xiao2, jiang.xin, qun.liu} @ huawei.com {hlbai, lyu, king} @cse.cuhk.edu.hk

{zhangwei379, houlu3, shang.lifeng, jinjing12, jiang.xin, qun.liu } @ huawei.com



&Archaeologisf

Limitations

e Q8BERT, Q-BERT, TernaryBERT, and BinaryBERT all require quantization
aware training

e Only work for models with less than 1-Billion parameters (up to 340M for
BERT Large)



Outlier features

e Pretrained transformer models are
not entirely robust to pruning; they
are fragile to the removal of a very
small number of features in the layer
outputs

e “Disabling only 48 out of 110M
parameters in BERT-base drops its
performance by nearly 30% on
MNLI” - Puccetti et al.

&Archaeologisf

BERT Busters: Outlier Dimensions that Disrupt Transformers

Olga Kovaleva™, Saurabh Kulshreshtha?, Anna Rogers? and Anna Rumshisky!
'Department of Computer Science, University of Massachusetts Lowell
2Center for Social Data Science, University of Copenhagen
l{okovalev, skul,arum}@{cs.uml.edu}
2arogers@sodas .ku.dk

Outlier Dimensions that Disrupt Transformers are Driven by Frequency

Giovanni Puccetti >4, Anna Rogers*, Aleksandr Drozd*, Felice Dell’Orletta®
! Scuola Normale Superiore, Pisa, Italy
2 Istituto di Linguistica Computazionale “Antonio Zampolli”, Pisa, ItaliaNLPLab - www.italianlp.it
3 Center for Social Data Science, University of Copenhagen, Denmark
4 RIKEN Center for Computational Science, Japan
giovanni.puccetti@sns.it, arogers@sodas.ku.dk,
alex@blackbird.pw, felice.dellorletta@ilc.cnr.it,



&Archaeologisf

Parallel work: nuQmm and ZeroQuant

nuQmm: Quantized MatMul for Efficient Inference

e Both methods use group-wise

quantization which offers greater
granularity / precision

Require custom CUDA kernels

Only on models of 2.7B and 20B
parameters respectively

Focus on accelerating inference and
reducing memory footprint

of Large-Scale Generative Language Models

Gunho Park*f, Baeseong Park*!, Se Jung Kwon!, Byeongwook Kim!, Youngjoo Leef, and Dongsoo Lee?
fPohang University of Science and Technology, Pohang, Republic of Korea
{gunho1123, youngjoo.lee} @postech.ac.kr
¥NAVER CLOVA, Seongnam, Republic of Korea
{baeseong.park, sejung.kwon, byeonguk.kim, dongsoo.lee} @navercorp.com

ZeroQuant: Efficient and Affordable Post-Training Quantization
for Large-Scale Transformers

Zhewei Yao*, Reza Yazdani Aminabadi, Minjia Zhang
Xiaoxia Wu, Conglong Li, Yuxiong He

Microsoft



Advanced NLP

LLM.int8()-visionary

Junjie Zhang




Develop new GPUs

TensorFloat-32 in the A100 GPU Accelerates Al Training, HPC up to 20x

NVIDIA's Ampere architecture with TF32 speeds single-precision work, maintaining accuracy and using no new code.

NVIDIA V100 FP32

NVIDIA A100 Tensor Core TF32 with Sparsity

Sign Range Precision
SRy
TF32 Range
TENSOR FLOAT 32 (TF32) I B BITS -
TF32 Precision

e oS
BFLOAT16I 8 BITS -

Source:https://blogs.nvidia.com/blog/tensorfloat-32-precisior
-format/



Develop new math for matrix decomposition and composition

LLM.int8()  Zutvecoruse Quantzaton

E (1) Find vector-wise constants: CW& Cx (2) Quantize (4) Dequantize E

' X *(127/C,) = X E

: X 12—, el 127/Cy) = Xpg Out * (CX®CW) = Oiit !
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Figure 2: Schematic of LLM.int8(). Given 16-bit floating-point inputs X 716 and weights W ¢16, the

features and weights are decomposed into sub-matrices of large magnitude features and other values.

The outlier feature matrices are multiplied in 16-bit. All other values are multiplied in 8-bit. We

perform 8-bit vector-wise multiplication by scaling by row and column-wise absolute maximum of

C, and C,, and then quantizing the outputs to Int8. The Int32 matrix multiplication outputs Out;so

are dequantization by the outer product of the normalization constants C, ® C,,. Finally, both outlier ~ Source: LLM.int8(): 8-bit Matrix Multiplication for
and regular outputs are accumulated in 16-bit floating point outputs. Transformers at Scale



Apply to loT devices

Source: Google Images



Model Interpretability

“ These outliers are highly systematic: at the 6.7B scale, 150,000 outliers
occur per sequence, but they are concentrated in only 6 feature
dimensions across the entire transformer. ”



Some others

e intd()?

e Use the same quantization method during training



