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Logistics

● Have you formed your course project teams?
○ Project proposal deadline: September 30



Goal for today’s class

How to train/use LLMs with a low compute budget

Part I: Efficient fine tuning techniques (LoRA)

Part II: LLM.int8() – quantizing LLM parameters to take less memory



Part I: Parameter Efficient Finetuning
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✍: Suchit Gupte

What is LORA?

A method of fine-tuning large pre-trained models by decomposing weight matrices

Modified forward pass

Assumption: If pretrained weights are low rank, weight update also must be low rank
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Performance on GPT-3 
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Applying LORA to transformers

Freeze

Apply LORA

Weights - Query, Key, Value 
and Output matrices

WHAT IS THE 
OPTIMAL RANK r 
FOR LORA?



LoRA - Reviewer
Alex Felderean



Summary

- Low-Rank Adaptation (LoRA) for reducing parameters during fine-tuning
- Demonstrates:

- parameter reduction by 10,000x
- GPU memory requirement by 3x

- Compared to other common methods:
- no added inference latency (vs adapters)
- on-par or better practical performance 
- higher training throughput



Strengths and Weaknesses

Originality: + Parallel, NOT sequential modules used throughout fine-tuning

                  + Reduces time significantly by cutting out downstream work 

      -  Lacks in-depth limitations of method in practicality

Quality:      + Graphics and explanations clear, good line of reasoning

Clarity: + Sections well organized and labeled to follow logic

-  Could use more visuals, especially for building context

Significance: + Very powerful for resource-limited environments (say, only 1 GPU)

~ Pros and cons shift depending on chosen models & resources

-  Full fine-tuning is still preferred, esp. for larger datasets



Questions
● Despite its generalization, where do we see LoRA tuning not converging 

roughly to training the original model? How does that limit the performance 
of LoRA?

● How have developments using the LoRA method paced with 
improvements of other fine-tuning methods? What limitations have been 
addressed with that method that affect LoRA’s usefulness?

● The paper roughly tested GPT-3’s 170B parameters. With models 
suspected to break the 1T parameter mark, does LoRA’s basis of 
generalization still hold the same impact in performance?



Ratings

Soundness: 3/4 (relatively well supported with evidence)

Presentation: 4/4 (very easy to follow and understand)

Contribution: 4/4 (grown into a popular method, impactful to AI field)

Overall: 8/10 (Strong Accept)

Confidence: 4/5



LoRA - Archaeologist
By Yifei Li, 09/16/2024
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● Why parameter-efficient fine-tuning (PEFT)?
○ Fine-tuning on a better pre-trained model > directly train a task-specific model
○ Models are getting bigger! Training/inference/deployment…

■ T5 (330M, 770M, 3B, 11B)
■ GPT-2 (330M, 774M, 1.5B) – GPT-3 (175B) – ChatGPT, GPT-4, GPT-4o, o1 (?)

● How to *parameter-efficiently* do fine-tuning?
○ The existence of Low-Rank Structures in Deep Learning
○ Techniques for parameter-efficient fine-tuning

Background



Low-Rank Structures in Deep Learning

Oymak, Samet, et al. "Generalization guarantees for neural networks via harnessing the low-rank structure of the jacobian." arXiv preprint arXiv:1906.05392 
(2019).

● Many machine learning problems have certain intrinsic low-rank structure
○ https://arxiv.org/pdf/1906.05392
○ Why N(parameters) >> N(examples), but still generalizable?
○ Low-rank information space vs. nuisance space

https://arxiv.org/pdf/1906.05392


Low-Rank Structures in Deep Learning

Oymak, Samet, et al. "Generalization guarantees for neural networks via harnessing the low-rank structure of the jacobian." arXiv preprint arXiv:1906.05392 
(2019).

● SVD on Jacobian matrix: low-rank information space vs. nuisance space



Low-Rank Structures in Deep Learning

Oymak, Samet, et al. "Generalization guarantees for neural networks via harnessing the low-rank structure of the jacobian." arXiv preprint arXiv:1906.05392 
(2019).

● SVD on Jacobian matrix: low-rank information space vs. nuisance space
○ Few but large eigenvalues vs. Many but small eigenvalues



Low-Rank Structures in Deep Learning

Oymak, Samet, et al. "Generalization guarantees for neural networks via harnessing the low-rank structure of the jacobian." arXiv preprint arXiv:1906.05392 
(2019).

● SVD on Jacobian matrix: low-rank information space vs. nuisance space
○ Few but large eigenvalues vs. Many but small eigenvalues
○ Model converges and generalizes fast in information space



Low-Rank Structures in Deep Learning

Oymak, Samet, et al. "Generalization guarantees for neural networks via harnessing the low-rank structure of the jacobian." arXiv preprint arXiv:1906.05392 
(2019).

● SVD on Jacobian matrix: low-rank information space vs. nuisance space
○ Few but large eigenvalues vs. Many but small eigenvalues
○ Model converges and generalizes fast in information space
○ Model converges slowly in nuisance (noisy) space and affects generalization



Low-Rank Structures in Deep Learning

Oymak, Samet, et al. "Generalization guarantees for neural networks via harnessing the low-rank structure of the jacobian." arXiv preprint arXiv:1906.05392 
(2019).

● SVD on Jacobian matrix: low-rank information space vs. nuisance space
○ Few but large eigenvalues vs. Many but small eigenvalues
○ Model converges and generalizes fast in information space
○ Model converges slowly in nuisance (noisy) space and affects generalization
○ That’s why early-stopping may work
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● Explicitly integrates low-rank matrix factorization during training
○ SVD, PCA, top-k eigenvalues
○ Directly use factorized matrices to fit NN layers

■ Sainath et al., 2013; Povey et al., 2018 … (see “related works” in the paper)

● Why not incorporate this into the fine-tuning stage?
○ A low-rank update to a frozen model for adaptation to downstream tasks

Low-Rank Structures in Deep Learning
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● Where do the efficient parameters come from?
○ Additional inner modules?

■ Adapter-tuning: https://arxiv.org/pdf/1902.00751
○ Embedding tokens?

■ Prefix-tuning: https://arxiv.org/pdf/2101.00190
○ Sub-networks?

■ Child-tuning: https://arxiv.org/pdf/2109.05687
○ Additional input/output layers?

■ Input-tuning: https://arxiv.org/pdf/2203.03131

PEFT Techniques

https://arxiv.org/pdf/1902.00751
https://arxiv.org/pdf/2101.00190
https://arxiv.org/pdf/2109.05687
https://arxiv.org/pdf/2203.03131
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PEFT Techniques (1): Adapters

● Inserting adapters between NN layers (i.e. submodules between layers)
○ Rebuffi et al., 2017; Houlsby et al., 2019; Lin et al., 2020
○ Better than fine-tuning only top layers!

Extend model length and
increase inference latency



PEFT Techniques (2): P-Tuning (P for Prefix or Prompt)

● Prefix-tuning (Stanford in Jan. 2021)
○ https://arxiv.org/abs/2101.00190

● P-tuning (Tsinghua in Mar. 2021)
○ https://arxiv.org/pdf/2103.10385

● Prompt-tuning (Google in Apr. 2021)
○ https://arxiv.org/pdf/2104.08691
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● P-tuning (Tsinghua in Mar. 2021)
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● Prompt-tuning (Google in Apr. 2021)
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Optimizing 
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Prefix-tuning

Li, Xiang Lisa, and Percy Liang. "Prefix-tuning: Optimizing continuous prompts for generation." arXiv preprint arXiv:2101.00190 (2021).



Prompt-tuning

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The power of scale for parameter-efficient prompt tuning." arXiv preprint arXiv:2104.08691 (2021).



Prompt-tuning

Lester, Brian, Rami Al-Rfou, and Noah Constant. "The power of scale for parameter-efficient prompt tuning." arXiv preprint arXiv:2104.08691 (2021).



Input-Tuning

An, Shengnan, et al. "Input-tuning: Adapting unfamiliar inputs to frozen pretrained models." arXiv preprint arXiv:2203.03131 (2022).

● Adding a Input-Adapter after inputs
● Portable: consider frozen PLM as a black box



● Discrete prompt words → Continuous trainable embedding tokens

P-tuning

Liu, X., Zheng, Y., Du, Z., Ding, M., Qian, Y., Yang, Z., & Tang, J. (2023). GPT understands, too. AI Open.



PEFT Techniques (2): P-Tuning (P for Prefix or Prompt)

● Prefix-tuning (Stanford in Jan. 2021)
○ https://arxiv.org/abs/2101.00190

● P-tuning (Tsinghua in Mar. 2021)
○ https://arxiv.org/pdf/2103.10385

● Prompt-tuning (Google in Apr. 2021)
○ https://arxiv.org/pdf/2104.08691

Optimizing 
continuous prompt tokens

Reduce the model’s
usable sequence length

https://arxiv.org/abs/2101.00190
https://arxiv.org/pdf/2103.10385
https://arxiv.org/pdf/2104.08691
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Summary

● Low-Rank Structures in Deep Learning
○ Why they exist and work

● Techniques for parameter-efficient fine-tuning
○ Source of tunable parameters: Adapters, Sub-networks, Continuous input embeddings, etc..
○ Pros/Cons: inference latency / usable sequence length



Follow up ideas



ΔW = A X B

size: A = d X r, B = r X d

How to get optimal r?



Why performed well in downstream missions?

Although the ranks are different, their first few singular vector directions overlap 
considerably.

They share a dimension and their normalized similarity is greater than 0.5.This 
means that although the rank is lowthe fitness matrix still performs well in 
downstream tasks.



r << d

“We argue that increasing r does not cover a more meaningful subspace, which 
suggests that a low-rank adaptation matrix is sufficient.”

We can calculate ΔW in every iterate progress

If ΔW begins to stabilize then reduce r.



Thanks!



Part II: Quantization



LLM.int8()

8-bit Matrix Multiplication for Transformers at Scale

Stakeholder -- Zeyi Liao



Efficiency status quo

1. Accessible
a. Handy Repo:

Imdeploy(https://github.com/InternLM/lm
deploy)

b. Various Design: Grouped Attention 
mechanism, Flashed Attention.

2. Time Cost
a. Speculative 

Decoding(https://x.com/BeidiChen/stat
us/1826300342985711719). 

Feature: High throughput, low latency etc..

3. Inference-scaling paradigm.

https://github.com/InternLM/lmdeploy
https://github.com/InternLM/lmdeploy
https://x.com/BeidiChen/status/1826300342985711719
https://x.com/BeidiChen/status/1826300342985711719


Training:

Qinghua Liu, https://arxiv.org/abs/2207.11912. Nice survey, check it out!

Where does the computation come from?

Inference:
Activation (less than computation from 
parameters)

https://arxiv.org/search/cs?searchtype=author&query=Liu,+Q
https://arxiv.org/abs/2207.11912


Let’s dive deeper into the 
quantization



High Level illustration

Models in bf16 only 
need twice less 
memory compared to 
using fp32.

Yet, you can not do quantization randomly, 
you should do it reasonably. Otherwise, 
model will lose its capability as model per se 
is just matrix containing numerous numbers.



Absmax / Zero-point quantization

https://medium.com/@sachinsoni600517/introduction-to-model-quantization-4effc7a17000

symmetry asymmetry

Somehow like 
normalization?



Absmax / Zero-point quantization



Absmax / Zero-point + Vector-wise quantization

1. View matrix multiplication as a sequence of independent inner products.
2. Compute scaling factor for each row of X and each column of W.

a. Robust to outlier. 



Performance of quantization

Takes:
Vector-wise quantization is helpful but insufficient.



Why fail? Outlier features!

They empirically find and define outlier features.

They empirically find that certain calculation need more precision beyond Int8.

They empirically show that performance no more degrade!

Luckily, they find that outlier features is sparse and systematic in practice, thus LLM.int8() only need minor 
additional overhead compared to pure Int8 quantization



NOTE:
BTW, the feature here just 
means the certain dimension, 
not eigenvector after SVD.

How Define Outlier features

Find the dimension
a. Find dimensions containing value > 6.
b. Same feature appear in at least 25% layers within transformer.
c. Same feature appear in at least 6% of all sequence.

Layer 0 Layer 1 Layer 2

Again, the defining the threshold is sort of heuristic, but it works, then it is 
what it is.



Prove the existence of outlier features by some experiments

Rigorous setting! 
4 models from OpenAI, 5 models from MetaAI, 1 from EleutherAI, 2 inference framework: Fairseq and huggingface.

1. Yeah, larger models have more outlier features.
2. Maybe not because of the mere model size, but the perplexity (somehow 

correlated with model size) is the determining factor.



Prove the existence of outlier features by some experiments

Median feature is too large!, So that 
quantization doesn’t work. Recall that scale 
is related the extreme values.



Performance of Int8.LLM

Takes:
1. Zeropoint is better than Absmax in this LLM context, due to its attribute of being asymmetry.
2. When model size reachs to a certain point, even zeropoint with vector-wise quantization can not handle the extreme 

magnitude well.
3. Using separate precision makes the performance great again.



Drawback? Yes, additional overhead

Acceptable but not ideal, esp. for production level use.

https://huggingface.co/blog/hf-bitsandbytes-integration



LLM.int8() - Review
By Mona Gandhi - 09/16/24



Summary

● Objective: Reduce the memory for 
inference while retaining full precision.

● Method: 
○ Developed procedure for Int8 matrix 

multiplication.
○ Vector-wise Quantization.
○ Mixed-precision Decomposition Scheme          

– for outliers.
● Show that by using LLM.int8(), they 

can perform inference in LLMs with up 
to 175B params w/o performance 
degradation.

🔎: Mona Gandhi



Reviewer Comments

Making huge models available to use with fewer resources.

Addresses outlier issues, performs experiments to show the importance of 
their decomposition method.         

🔎: Mona Gandhi



Reviewer Comments

Why is the threshold set to 6?

With Mixed-Precision Decomposition, zero point ~ absolute maximum, 
however vector-wise still has an edge!        

🔎: Mona Gandhi



Reviewer Comments

Addressed in limitations: tried only on int8(), what happens at larger scale is 
unknown, does not focus on training and fine tuning.  

Why perplexity? And not other metrics for evaluation? 

Maybe try reducing the size of the weight matrix, ignoring insignificant weights 
– pruning? 

🔎: Mona Gandhi



Reviewer Comments

Has very significant broader impact!

Will certainly be useful for academic institutions specially.

Would be useful for having LLMs on smaller mobile devices, accessible to all 
easily.

🔎: Mona Gandhi



How was LLM.int8() inspired by previous work?

Archaeologist 

Hanane Moussa



LLM.int8()

Dettmers et al. develop LLM.int8(), a two step quantization procedure: 

● vector wise-quantization for most features using 8-bit matrix multiplication 
(99.9%) 

● mixed-precision decomposition for the emergent outliers using 16-bit (0.1%)

Allows inference in LLMs with up to 175B parameters without any performance 
degradation.

Archaeologist 



Quantization of BERT models

● Q8BERT (2019) quantizes the 
model’s weights and 
activations from 32-bit floating 
point to 8-bit integer. 

● 4x reduction in model size.
● Some performance loss. 

● Q-BERT (2020) quantizes model 
weights to 2-bit precision.

● Uses a mixed-precision approach 
using a Hessian Matrix to 
determine which parts of the 
model are more sensitive to 
quantization

● Some accuracy loss. 

Archaeologist 



Quantization of BERT models

● TernaryBERT (2020) quantizes 
model weights to ternary 
values (-1, 0, 1). 

● Model performance is 
improved using knowledge 
distillation from full-precision 
BERT model

● BinaryBERT (2021) further 
quantizes the model to binary 
values (1, -1)

● Also uses a 
knowledge-distillation 
approach. 

Archaeologist 



Limitations

● Q8BERT, Q-BERT, TernaryBERT, and BinaryBERT all require quantization 
aware training

● Only work for models with less than 1-Billion parameters (up to 340M for 
BERT Large)

Archaeologist 



Outlier features

● Pretrained transformer models are 
not entirely robust to pruning; they 
are fragile to the removal of a very 
small number of features in the layer 
outputs

● “Disabling only 48 out of 110M 
parameters in BERT-base drops its 
performance by nearly 30% on 
MNLI” - Puccetti et al. 

Archaeologist 



Parallel work: nuQmm and ZeroQuant

● Both methods use group-wise 
quantization which offers greater 
granularity / precision

● Require custom CUDA kernels
● Only on models of 2.7B and 20B 

parameters respectively
● Focus on accelerating inference and 

reducing memory footprint

Archaeologist 



     Advanced NLP
   

                   LLM.int8()-visionary
                                 

                Junjie Zhang



Develop new GPUs

1
Source:https://blogs.nvidia.com/blog/tensorfloat-32-precision
-format/



Develop new math for matrix decomposition and composition

The extra addition 
operations will 
increase the 
inference time.

Source: LLM.int8(): 8-bit Matrix Multiplication for 
Transformers at Scale 

   



Apply to IoT devices

Source: Google Images
   



Model Interpretability

“    

“ These outliers are highly systematic: at the 6.7B scale, 150,000 outliers 
occur per sequence, but they are concentrated in only 6 feature 
dimensions across the entire transformer. ”

”



Some others

● int.4() ?

● Use the same quantization method during training


