
Scaling
CSE 5539: Advanced Topics in Natural Language Processing

https://shocheen.github.io/courses/advanced-nlp-fall-2024



Logistics

● Project proposal: How did it go? 
○ You’ll receive (informal) feedback by Wednesday. 



Logistics

● OSC Access: Any issues, questions?



Logistics

● Optional Assignment: 
○ Feedback on your presentation (content / skills) 

■ Your task: Write a self-review 
■ My task: I will suggest improvements (if applicable)(

○ Feedback on the class
■ What you like, what you don’t, format, content, anything else: this will be anonymized. 
■ I will implement things that can be immediately addressed. 



Today’s goal

Bigger is better?

Part I: Scaling the model (parameter, data, compute)

Part II: Scaling at inference time



Stakeholder



Training Compute-Optimal 
Large Language Models

Jordan Hoffman et al., 2023

By Mona Gandhi



Motivation

● Size of large dense transformers → constantly rising
● Challenges: 

○ overwhelming computational requirements
○ acquiring high-quality data

Need to understand HOW to scale these models?

 



Motivation

Kaplan et al [1] 

→ Predictable relationship b/w model size and loss
→ Models should not be trained to their lowest point to be compute optimal
→ When computational budget - 10x, suggests model size - 5.5x and training tokens - 1.8x

Issues: 

● Use fixed number of training tokens and learning rate for all models
● Does not consider the effect of training tokens  

 [1] Scaling laws for neural language models, Kaplan et al., 2020



Overview Fewer params with 
same compute and 
better performance! 



Methods

Given a fixed FLOP budget, how should one tradeoff model size and the number 
of training tokens?

● Start by training a range of models varying in both model size and training 
tokens

● And thus use the resulting training curves to fit an empirical estimator of how 
they should scale 



Approach 1: Fix model sizes and vary number of training tokens 

Vary the number of training tokens for a family of models (70M to 10B params), 
training each model for 4 different training sequences.



Approach 2: IsoFLOP profiles

Vary the model size for a fixed set of 9 different training FLOPs (6x1018 to 3x1021) 
and consider final training loss for each point.
Answers the question: For a given FLOP budget, what is the optimal param count?



Approach 3: Fitting a parametric loss function

Model all final losses from Approach 1 and 2 as a parametric function of model 
param count and training tokens.



Optimal model scaling

Here N → number of params, C → compute cost and D → size of training tokens



Optimal model scaling

Clearly suggests that given the training compute budget for many current LLMs, smaller 
models should have been trained on more tokens to achieve the most performant model.



Chinchilla 

Optimal model size for Gopher → 40 to 70 B params 

Compare Chinchilla to Gopher 

● Both have the same number of FLOPs
● Differ in the size of the model and training tokens

Uses less compute for inference and storage compared to Gopher!



Chinchilla - Training as compared to Gopher 

● Trained on same dataset as Gopher – MassiveText, slightly different subset 
distribution to account for increased number of training tokens.

● Uses AdamW instead of Adam in Gopher.
● Slightly modified SentencePiece Tokenizer, vocab is 94.15% similar to Gopher.



Chinchilla - Evaluation



Chinchilla - Results



Chinchilla - Results



Conclusion

● Trend so far → increase model size w/o increasing number of training tokens.
● Hypothesis: training larger and larger models is resulting into models that are 

substantially underperforming compared to what could be achieved with 
same compute power. 

● Propose 3 predictive approaches → Gopher is over-sized!! 
● Chinchilla (70B) outperforms Gopher (280B) and even larger models 



Limitations

● Only have two comparable training runs at large scale, do not have 
intermediate results. 

● Trained on less than one epoch of training data. 
● Need of better, high quality training datasets. 

○ May introduce ethical and privacy concerns as dataset size increases
● Chinchilla does suffer from bias and toxicity (but less affected than Gopher) 



Need for dataset scaling!



Training Compute-Optimal 
Large Language Models

Reviewer

🔎: Hamoud Alhazmi



● Equal scaling of model size and training tokens:
○ The authors propose that for compute-optimal training, model size and training tokens should 

scale equally—doubling the model size should be matched by doubling the training tokens to 
achieve the best performance within a fixed compute budget.

● Chinchilla model:
○ A 70-billion-parameter model trained on 1.4 trillion tokens using the same compute budget as 

the larger Gopher (280 billion parameters). 
○ Chinchilla outperforms Gopher and other larger models (e.g., GPT-3, Jurassic-1, 

Megatron-Turing), showing that bigger models are often over-sized and under-trained.
○ Chinchilla sets state-of-the-art performance on several benchmarks, including a 7% 

improvement over Gopher on the MMLU benchmark, with an average accuracy of 67.5%. This 
highlights the success of the compute-optimal scaling strategy.

Recap of the main contributions 

🔎: Hamoud Alhazmi



● Extensive empirical study:
○ It is an extensive study, training over 400 models (ranging from 70 million to 16 billion 

parameters) on varying token counts. This analysis models the relationship between model 
size, training tokens, and performance, revealing that many large models are significantly 
undertrained for their size.

● Less compute for inference and fine-tuning:
○ The study shows that compute-optimal models like Chinchilla offer practical advantages. 

Despite being smaller, Chinchilla outperforms larger models and requires less compute for 
inference and fine-tuning, making it ideal for compute-limited applications.

Recap of the main contributions 

🔎: Hamoud Alhazmi



Strengths

- Clarity: It is well-written, clearly explaining the methods used to explore the relationship between 
compute, model size, and data. It presents three approaches for estimating optimal trade-offs, with a 
well-motivated introduction and convincing empirical results.

- Quality: High-quality paper, with over 400 models trained to validate the hypothesis. It challenges 
existing assumptions and introduces Chinchilla, which outperforms larger models. Broad benchmark 
evaluations strengthen the conclusions.

- Originality: It advances compute-efficient language model training by proposing equal scaling of 
model size and data, challenging conventional approaches and setting a new direction for LLM 
design.

🔎: Hamoud Alhazmi



Strengths

- Soundness: The methodology is sound, with conclusions well-supported by extensive 
experimentation.

- Broader Impact: The paper has significant implications for LLM development, potentially shifting the 
focus toward more data-efficient and cost-effective model training.

🔎: Hamoud Alhazmi



Weaknesses

- Power-law assumption: One minor concern could be the reliance on the power-law assumption for 
scaling relationships, but the authors acknowledge this limitation and suggest potential future 
directions for refining these scaling laws.

- Limited training runs at large scales: Despite extensive experimentation with over 400 models, 
the paper provides only two large-scale training runs (Chinchilla and Gopher), limiting insight into 
how the scaling laws apply across intermediate model sizes and compute budgets.

- The paper briefly mentions ethical concerns like biases, toxicity, and privacy but lacks in-depth 
exploration. A more thorough analysis of these issues would have enhanced its impact on 
responsible AI discussions.

🔎: Hamoud Alhazmi



Review

- Novelty (8/10): It offers new insights by challenging existing scaling laws and 
proposing compute-optimal training strategies, providing a fresh approach to 
model size and token scaling.

- Correctness (9/10): It is backed by extensive experiments, with sound 
methodology and strong empirical evidence.

- Clarity (7.5/10): Most of the parts are clearly explained.
- Significance (10/10): Significant implications for future LLM development.
- Recommendation: Accept.

🔎: Hamoud Alhazmi



Archaeologist
Junjie Zhang



Gopher (2022)

1Ref: Rae, Jack W., et al. "Scaling language models: Methods, analysis & insights from training gopher." arXiv preprint arXiv:2112.11446 (2021).



Gopher (2022)



Scaling Laws for Neural Language Models (2020)

Ref: Kaplan, Jared et al. “Scaling Laws for Neural Language Models.” ArXiv abs/2001.08361 (2020): n. pag.

Smooth power laws: Performance has a power-law relationship with each of the three scale factors 
N, D, C when not bottlenecked by the other two, with trends spanning more than six orders of 
magnitude. We observe no signs of deviation from these trends on the upper end, though performance 
must flatten out eventually before reaching zero loss. 



Scaling Laws for Neural Language Models (2020)

PF-day = 1015 × 24 × 3600 = 8.64 × 1019 floating point operation
 

 

  
 

Large models are more 
sample-efficient than small 
models, reaching the same 
level of performance with 
fewer optimization steps 
(Figure 2) and using fewer 
data points (Figure 4) 



Scaling Laws for Neural Language Models (2020)

Smin – an estimate of the minimal number of training steps needed to reach a given value of the loss. 
 

 

 
 



Scaling Laws for Neural Language Models (2020)

   

We have observed consistent scalings of language model log-likelihood loss with 
non-embedding parameter count N, dataset size D, and optimized training 
computation Cmin, as encapsulated in Equations (1.5) and (1.6). Conversely, we 
find very weak dependence on many architectural and optimization 
hyperparameters. Since scalings with N, D, Cmin are power-laws, there are 
diminishing returns with increasing scale. 



Scale Efficiently: Insights from Pre-training and Fine-tuning 
Transformers.(2020)

Ref: Tay, Yi et al. “Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers.” ArXiv abs/2109.10686 (2021): n. pag.
 

 
 

   

We find that scaling laws may differ in upstream and downstream setups. Specifically, 
contrary to Kaplan et al. (2020), we find that downstream performance strongly depends 
on shape and not only on model size. Hence, pretraining performance may not necessarily 
transfer to downstream applications. (Figure 1). 

 
Our findings show that pre-training perplexity can often be a deceiving indicator of 
down-stream quality and therefore model building based on upstream perplexity can be 
challenging. Scaling laws can differ substantially when considering metrics on actual 
downstream fine- tuning. (Figure 1) 
 

 

●

 



Scale Efficiently: Insights from Pre-training and Fine-tuning 
Transformers.(2020)



Visionary



Training Compute-Optimal 
Large Language Models 
J. Hoffmann, S. Borgeaud, A. Mensch et al.

 NeurIPS 2022 

Paper: arxiv.org/abs/2203.15556 🔭 Sriram Sai Ganesh 

AU24 CSE 5539 Presentation

https://arxiv.org/abs/2203.15556


🔭 Sriram Sai Ganesh 

Data-Centric Training 📚
● Compute-optimal => lower FLOPs for 

identical performance.

● Focus moves to high-quality data for 

training

● Data Augmentation Using LLMs – 

https://arxiv.org/pdf/2403.02990

● Towards solving a related problem – 

How can we tell if something is 

AI-generated?

https://arxiv.org/pdf/2403.02990


🔭 Sriram Sai Ganesh 

Big model go vroom 🏎 📈
● Larger models, emergent abilities.

○ New SoTA on a variety of task 

benchmarks, in succession.

● ‘Golden’ datasets

○ Often a well-kept secret.

● Arms-race like situation*

● No signs of slowing down*



🔭 Sriram Sai Ganesh 

Democratizing Frontier Research 🗳
● Resources for SoTA model 

development out-of-reach for most 

NLP researchers.

○ GPT-4 – ~36M V100 hours;

● Models currently available may not 

be fair towards all.

○ Bias considerations

● Towards sustainability.

ai.meta.com/blog/large-language-model-llama-meta-ai/

https://ai.meta.com/blog/large-language-model-llama-meta-ai/


Scaling LLM Test-Time Compute Optimally can
be More Effective than Scaling Model Parameters



Stakeholder
Shantanu



Motivation

Motivation is to explore how “scaling test-time compute” for large language models 
(LLMs) can improve their performance, especially on complex tasks, without the 
need to increase model size



High-Level Summary of Paper

● Paper introduces adaptive strategies (iterative revisions and search-based 
methods with reward models) to allocate test-time compute based on task 
difficulty, optimizing performance without increasing model size.

● Given a fixed generation and compute budget, smaller models can achieve 
results comparable to much larger models on challenging tasks through these 
strategies

● In addition, it examines through experimental design the different scenarios 
where a tradeoff between pretraining compute and test-time compute is 
advantageous



Key Contributions

1. Explores Novel Adaptive method to allocate test-time compute based on task difficulty
2. Process Reward Models (PRMs) predicts the reward or correctness of each step during test-time 

inference. ORM evaluates only the final outcome.
3. Test-time compute can often replace the need to train large LLM models. Highly dependent on the 

task.
4. Search vs. Revision Strategies (Combination?): Paper evaluates two approaches: Searching to find 

the best answer and Correcting the answer if it is incorrect



Experiment Setup



The Proposed Framework

● Two Knobs for LLM Distribution Changes
○ Proposer: LLM generates an initial distribution of responses. This proposal distribution can be improved by iterative 

revisions or optimization techniques such as reinforcement learning
○ Verifier: The verifier scores and selects the best response from multiple proposals. It can evaluate final answers (as in 

best-of-N methods) or assess correctness at intermediate steps (using PRM).



Optimization for Scaling Equation



Assessing the Difficulty of a Question (MATH Dataset)

● Categorize each question into one of five difficulty levels based on the 
model’s pass@1 rate (the likelihood of generating the correct answer in the 
first attempt).

● Difficulties were generated using 2048 samples per question.
● Proposes a Model-predicted difficulty (using verifier predictions) and Oracle 

Difficulty (ground-truth answer-based) methods for difficulty estimation



1st Experiment: Scaling Test-Time 
Compute via Verifiers



Comparing PRM Search Methods



Results

● “Smaller generation budgets, beam search 
significantly out-performs best-of-N. 
However, as the budget is scaled up, 
these improvements greatly diminish, with 
Beam search often underperforming the 
best-of-N baseline.”

● “Lookahead-search generally 
underperforms other methods at the same 
generation budget, likely due to the 
additional computation inducted by 
simulating the lookahead rollouts”



2nd Experiment: Refining the Proposal 
Distribution



Different Refinement Approaches



Results

● “We find that there exists a tradeoff 
between sequential (e.g. revisions) and 
parallel (e.g. standard best-of-N) test-time 
computation, and the ideal ratio of 
sequential to parallel test-time compute 
depends critially on both the compute 
budget and the specific question at hand.” 

● “Specifically, easier questions benefit from 
purely sequential test-time compute, 
whereas harder questions often perform 
best with some ideal ratio of sequential to 
parallel compute.”



Bringing it all Together



Conclusion:

● For easy and medium tasks, test-time compute often does not require the need for additional pretraining. However, for more 
challenging tasks or when the inference requirements are high, increasing pretraining is generally more effective at boosting 
model performance

● Pretraining is often necessary to improve results on more difficult problems that fall outside of the model's trained abilities



Reviewer
Adam Ryan



Strengths

- Method for generating sequential revision data using high-temperature batch 
generation and subsequent manual chain construction.

- Use of a difficulty-based scaling ratio between sequential and parallel 
sampling. (at the same time is a weakness)

- Comprehensive evaluation of various approaches, including search strategies 
and verifiers.



Weaknesses

- Heavy reliance on accurate difficulty assessment; misjudgment impacts 
results significantly. Flawed separation method

- Limited explanation on how problem difficulty is determined compared to 
detailed search algorithm descriptions.

- Evaluation limited to the MATH dataset.
- Limited/insufficient depth on verifier training methods.
- Lack of clarity/Not clear to read. Way too many fancy words
- Focuses more on explaining search algorithms than highlighting novel 

contributions.
- Some questionable choices



Example

- When combining techniques, why apply verifier twice instead of once for all?



Review

- Novelty 4.0/5
- Correctness 4.5/5
- Clarity 2.0/5
- Significance 4.0/5
- Recommendation: Tentative Accept



Archaeologist
Zephyr Jiang



Which work inspires this one

- Chain-of-thought prompting
- Self-refine LLM

- Scaling law for training
- Best-of-n sampling

- Searching (Beam-search/DFS/BFS/MCTS) on inference

🏺: Zephyr Jiang

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2407.18219
http://arxiv.org/pdf/2203.15556
https://openai.com/index/measuring-goodharts-law/
https://arxiv.org/abs/2305.10601


Concurrent work/Which work is inspired by this one

- OpenAI’s o1 model
- Training LLM to self-correct
- My class project for this course - application of LLM self-correct

🏺: Zephyr Jiang

https://openai.com/index/introducing-openai-o1-preview/
https://arxiv.org/abs/2409.12917


Visionary
Roozbeh Nahavandi



Future Directions
Scalability and Generalization

● How would optimal test-time compute do across different tasks?
The question is whether the same approach can be applied effectively to various problem 
types, or if adjustments are needed. Do strategies that work in one area, like 
mathematics, generalize well to others, such as Code Generation & Understanding or 
Logical Reasoning?



Future Directions
Scalability and Generalization

● How would optimal test-time compute do across different tasks?
The question is whether the same approach can be applied effectively to various problem 
types, or if adjustments are needed. Do strategies that work in one area, like 
mathematics, generalize well to others, such as Code Generation & Understanding or 
Logical Reasoning?

● How would compute-optimal scaling and process-based verifier models 
impact larger/smaller models?

Would applying these strategies to larger/smaller models lead to significant 
improvements in accuracy and efficiency, or would the gains be marginal due to the 
models’ inherent capabilities? Could these techniques further optimize 
computational resources in large-scale models, especially when dealing with 
complex tasks?



Future Directions
Optimization of Test-Time Compute Strategies
● How would other search algorithms like Monte Carlo Tree Search affect 

test-time compute optimization?
Search algorithms like MCTS, beam search, or lookahead search could explore multiple 
response paths at test-time. The question is whether these methods can enhance output 
refinement and accuracy without significantly increasing computational costs.



Future Directions
Optimization of Test-Time Compute Strategies
● How would other search algorithms like Monte Carlo Tree Search affect 

test-time compute optimization?
Search algorithms like MCTS, beam search, or lookahead search could explore multiple 
response paths at test-time. The question is whether these methods can enhance output 
refinement and accuracy without significantly increasing computational costs.

● How would chain-of-thought reasoning compare to their approach?
Would it provide better accuracy or consistency during test-time compute? How can 
we implement chain-of-thought reasoning alongside the compute-optimal strategies 
in this paper to further enhance performance?



Future Directions
Optimization of Test-Time Compute Strategies
● How would other search algorithms like Monte Carlo Tree Search affect 

test-time compute optimization?
Search algorithms like MCTS, beam search, or lookahead search could explore multiple 
response paths at test-time. The question is whether these methods can enhance output 
refinement and accuracy without significantly increasing computational costs.

● How would chain-of-thought reasoning compare to their approach?
Would it provide better accuracy or consistency during test-time compute? How can 
we implement chain-of-thought reasoning alongside the compute-optimal strategies 
in this paper to further enhance performance?

● How can we prevent the language model from exploiting the reward model?
Models may exploit weaknesses in the reward model to generate low-quality 
outputs. Can integrating strategies like chain-of-thought reasoning or adaptive 
feedback help mitigate this and ensure better-quality results?



Adaptive and Dynamic Compute Allocation

● How can scaling with dynamic task difficulty prediction optimize test-time 
compute?

This paper estimates task difficulty using model-specific metrics, but future models 
could predict task difficulty in real-time. The question is whether dynamically 
adjusting compute allocation based on these predictions can lead to more efficient 
use of resources, allowing the model to focus computational power only on 
challenging tasks while optimizing overall performance.

Future Directions



Thank You!


