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Logistics

e Project proposal: How did it go?
o You'll receive (informal) feedback by Wednesday.



Logistics

e (OSC Access: Any issues, questions?



Logistics

e Optional Assignment:
o Feedback on your presentation (content / skills)
m  Your task: Write a self-review
m My task: | will suggest improvements (if applicable)(
o Feedback on the class
m  What you like, what you don’t, format, content, anything else: this will be anonymized.
m | will implement things that can be immediately addressed.



Today'’s goal

Bigger is better?

Part |: Scaling the model (parameter, data, compute)

Part Il: Scaling at inference time



Stakeholder



Training Compute-Optimal
Large Language Models

Jordan Hoffman et al., 2023

By Mona Gandhi



Motivation

e Size of large dense transformers — constantly rising

e Challenges:
o overwhelming computational requirements
o acquiring high-quality data

Need to understand HOW to scale these models?



Motivation

Kaplan et al [1]

— Predictable relationship b/w model size and loss
— Models should not be trained to their lowest point to be compute optimal
— When computational budget - 10x, suggests model size - 5.5x and training tokens - 1.8x

Issues:

e Use fixed number of training tokens and learning rate for all models
e Does not consider the effect of training tokens

[1] Scaling laws for neural language models, Kaplan et al., 2020
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Figure 1 | Overlaid predictions. We overlay the predictions from our three different approaches,
along with projections from Kaplan et al. (2020). We find that all three methods predict that current
large models should be substantially smaller and therefore trained much longer than is currently
done. In Figure A3, we show the results with the predicted optimal tokens plotted against the optimal
number of parameters for fixed FLOP budgets. Chinchilla outperforms Gopher and the other large

models (see Section 4.2).



Methods

Given a fixed FLOP budget, how should one tradeoff model size and the number
of training tokens?

e Start by training a range of models varying in both model size and training
tokens

e And thus use the resulting training curves to fit an empirical estimator of how
they should scale



Approach 1: Fix model sizes and vary number of training tokens

Vary the number of training tokens for a family of models (70M to 10B params),
training each model for 4 different training sequences.
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Figure 2 | Training curve envelope. On the left we show all of our different runs. We launched a
range of model sizes going from 70M to 10B, each for four different cosine cycle lengths. From these
curves, we extracted the envelope of minimal loss per FLOP, and we used these points to estimate the
optimal model size (center) for a given compute budget and the optimal number of training tokens
(right). In green, we show projections of optimal model size and training token count based on the
number of FLOPs used to train Gopher (5.76 x 10%3).



Approach 2: IsoFLOP profiles

Vary the model size for a fixed set of 9 different training FLOPs (6x10'8to 3x102")
and consider final training loss for each point.
Answers the question: For a given FLOP budget, what is the optimal param count?
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Figure 3 | IsoFLOP curves. For various model sizes, we choose the number of training tokens such
that the final FLOPs is a constant. The cosine cycle length is set to match the target FLOP count. We
find a clear valley in loss, meaning that for a given FLOP budget there is an optimal model to train
(left). Using the location of these valleys, we project optimal model size and number of tokens for
larger models (center and right). In green, we show the estimated number of parameters and tokens
for an optimal model trained with the compute budget of Gopher.



Approach 3: Fitting a parametric loss function

Model all final losses from Approach 1 and 2 as a parametric function of model
param count and training tokens.
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Figure 4 | Parametric fit. We fit a parametric modelling of the loss £.(N, D) and display contour (left)
and isoFLOP slices (right). For each isoFLOP slice, we include a corresponding dashed line in the left
plot. In the left plot, we show the efficient frontier in blue, which is a line in log-log space. Specifically,
the curve goes through each iso-loss contour at the point with the fewest FLOPs. We project the
optimal model size given the Gopher FLOP budget to be 40B parameters.



Optimal model scaling

Table 2 | Estimated parameter and data scaling with increased training compute. The listed
values are the exponents, a and b, on the relationship N,y o« C* and D, o CP. Our analysis suggests
a near equal scaling in parameters and data with increasing compute which is in clear contrast
to previous work on the scaling of large models. The 10" and 90™ percentiles are estimated via
bootstrapping data (80% of the dataset is sampled 100 times) and are shown in parenthesis.

Approach Coeff. a where N,,; o« C* Coeff. b where D, o ch
1. Minimum over training curves 0.50 (0.488,0.502) 0.50 (0.501,0.512)
2. IsoFLOP profiles 0.49 (0.462,0.534) 0.51 (0.483,0.529)
3. Parametric modelling of the loss 0.46 (0.454,0.455) 0.54 (0.542,0.543)
Kaplan et al. (2020) 0.73 0.27

Here N — number of params, C — compute cost and D — size of training tokens



Optimal model scaling

Table 3 | Estimated optimal training FLOPs and training tokens for various model sizes. For
various model sizes, we show the projections from Approach 1 of how many FLOPs and training
tokens would be needed to train compute-optimal models. The estimates for Approach 2 & 3 are
similar (shown in Section D.3)

Parameters FLOPs FLOPs (in Gopher unit) Tokens
400 Million 1.92e+19 1/29,968 8.0 Billion
1 Billion 1.21e+20 1/4,761 20.2 Billion
10 Billion 1.23e+22 1/46  205.1 Billion
[ 67 Billion 5.76e+23 1 1.5 Trillion |
175 Billion 3.85e+24 6.7 3.7 Trillion
(280 Billion 9.90e+24 17.2 5.9 Trillion |
520 Billion 3.43e+25 59.5  11.0 Trillion
1 Trillion 1.27e+26 221.3  21.2 Trillion
10 Trillion 1.30e+28 22515.9 216.2 Trillion

Clearly suggests that given the training compute budget for many current LLMs, smaller
models should have been trained on more tokens to achieve the most performant model.



Chinchilla

Optimal model size for Gopher — 40 to 70 B params
Compare Chinchilla to Gopher

e Both have the same number of FLOPs
e Differ in the size of the model and training tokens

Uses less compute for inference and storage compared to Gopher!



Chinchilla - Training as compared to Gopher

e Trained on same dataset as Gopher — MassiveText, slightly different subset
distribution to account for increased number of training tokens.
e Uses AdamW instead of Adam in Gopher.

e Slightly modified SentencePiece Tokenizer, vocab is 94.15% similar to Gopher.

Model Layers Number Heads Key/Value Size d, .3 MaxLR Batch Size
Gopher 280B 80 128 128 16,384 4x10> 3M — 6M
Chinchilla 70B 80 64 128 8,192 1x10™* 1.5M — 3M

Table 4 | Chinchilla architecture details. We list the number of layers, the key/value size, the
bottleneck activation size dqe, the maximum learning rate, and the training batch size (# tokens).

The feed-forward size is always set to 4 X d,04e1- Note that we double the batch size midway through
training for both Chinchilla and Gopher.



Chinchilla - Evaluation

# Tasks Examples

Language Modelling 20 WikiText-103, The Pile: PG-19, arXiv, FreeLaw, . . .

Reading Comprehension 3 RACE-m, RACE-h, LAMBADA

Question Answering 3 Natural Questions, TriviaQA, TruthfulQA

Common Sense 5 HellaSwag, Winogrande, PIQA, SIQA, BoolQ

MMLU 57 High School Chemistry, Astronomy, Clinical Knowledge, ...
BIG-bench 62 Causal Judgement, Epistemic Reasoning, Temporal Sequences, . ..

Table 5 | All evaluation tasks. We evaluate Chinchilla on a collection of language modelling along
with downstream tasks. We evaluate on largely the same tasks as in Rae et al. (2021), to allow for
direct comparison.



Chinchilla - Results
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Figure 6 | MMLU results compared to Gopher We find that Chinchilla outperforms Gopher by 7.6%
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the bits-per-byte (bpb) improvement (decrease) of Chinchilla compared to Gopher. On all subsets,

Figure 5 | Pile Evaluation. For the different evaluation sets in The Pile (Gao et al., 2020), we show
Chinchilla outperforms Gopher.

on average (see Table 6) in addition to performing better on 51/57 individual tasks, the same on

2/57, and worse on only 4/57 tasks.

Figure 7 | BIG-bench results compared to Gopher Chinchilla out performs Gopher on all but four

BIG-bench tasks considered. Full results are in Table A7.



Chinchilla - Results

Chinchilla Gopher GPT-3 MT-NLG 530B
LAMBADA Zero-Shot 77.4 745 762 76.6
RACE-m Few-Shot 86.8 75.1  58.1 -
RACE-h Few-Shot 82.3 71.6 468 47.9

Table 7 | Reading comprehension. On RACE-h and RACE-m (Lai et al., 2017), Chinchilla considerably
improves performance over Gopher. Note that GPT-3 and MT-NLG 530B use a different prompt format
than we do on RACE-h/m, so results are not comparable to Gopher and Chinchilla. On LAMBADA

(Paperno et al., 2016), Chinchilla outperforms both Gopher and MT-NLG 530B.

| Chinchilla | Gopher

All 78.3%
Male 71.2%
Female | 79.6%
Neutral | 84.2%

71.4%
68.0%
71.3%
75.0%

Table 10 | Winogender results. Left: Chinchilla consistently resolves pronouns better than Gopher.
Right: Chinchilla performs better on examples which contradict gender stereotypes (gotcha examples).
However, difference in performance across groups suggests Chinchilla exhibits bias.

| Chinchilla | Gopher

Male gotcha 62.5%
Male not gotcha 80.0%
Female gotcha 76.7%

Female not gotcha | 82.5%

59.2%
76.7%
66.7%
75.8%

Chinchillal| Gopher GPT-3 MTNLG 530B Supervised SOTA
HellaSWAG 80.8% 79.2% 78.9% 80.2% 93.9%
PIQA 81.8% 81.8% 81.0% 82.0% 90.1%
Winogrande | 74.9% | 70.1% 70.2% 73.0% 91.3%
SIQA 51.3% | 50.6% - - 83.2%
BoolQ 83.7% | 79.3% 60.5% 78.2% 91.4%

Table 8 | Zero-shot comparison on Common Sense benchmarks. We show a comparison between
Chinchilla, Gopher, and MT-NLG 530B on various Common Sense benchmarks. We see that Chinchilla
matches or outperforms Gopher and GPT-3 on all tasks. On all but one Chinchilla outperforms the
much larger MT-NLG 530B model.

Method |Chinchilla)| Gopher GPT-3 SOTA (open book)
0-shot 16.6% 10.1% 14.6%
Natural Questions (dev) 5-shot 31.5% 24.5% - 54.4%
64-shot | 35.5% 28.2% 29.9%
0-shot 67.0% 52.8% 64.3%
TriviaQA (unfiltered, test)  5-shot 73.2% 63.6% - -
64-shot 72.3% 61.3% 71.2%
0-shot 55.4% 43.5% -
TriviaQA (filtered, dev) 5-shot 64.1% 57.0% - 72.5%
64-shot 64.6% 57.2% -

——
Table 9 | Closed-book question answering. For Natural Questions (Kwiatkowski et al., 2019) and
TriviaQA (Joshi et al., 2017), Chinchilla outperforms Gopher in all cases. On Natural Questions,
Chinchilla outperforms GPT-3. On TriviaQA we show results on two different evaluation sets to allow
for comparison to GPT-3 and to open book SOTA (FiD + Distillation (Izacard and Grave, 2020)).



Conclusion

e Trend so far — increase model size w/o increasing number of training tokens.

e Hypothesis: training larger and larger models is resulting into models that are
substantially underperforming compared to what could be achieved with
same compute power.

e Propose 3 predictive approaches — Gopher is over-sized!!

e Chinchilla (70B) outperforms Gopher (280B) and even larger models



Limitations

e Only have two comparable training runs at large scale, do not have
intermediate results.

e Trained on less than one epoch of training data.

e Need of better, high quality training datasets.

o May introduce ethical and privacy concerns as dataset size increases
e Chinchilla does suffer from bias and toxicity (but less affected than Gopher)



Need for dataset scaling!



@ DeepMind

Training Compute-Optimal
Large Language Models

Reviewer

/2: Hamoud Alhazmi



Recap of the main contributions

e Equal scaling of model size and training tokens:

o The authors propose that for compute-optimal training, model size and training tokens should
scale equally—doubling the model size should be matched by doubling the training tokens to
achieve the best performance within a fixed compute budget.

e Chinchilla model:

o A 70-billion-parameter model trained on 1.4 trillion tokens using the same compute budget as
the larger Gopher (280 billion parameters).

o Chinchilla outperforms Gopher and other larger models (e.g., GPT-3, Jurassic-1,
Megatron-Turing), showing that bigger models are often over-sized and under-trained.

o Chinchilla sets state-of-the-art performance on several benchmarks, including a 7%
improvement over Gopher on the MMLU benchmark, with an average accuracy of 67.5%. This
highlights the success of the compute-optimal scaling strategy.

A2 Hamoud Alhazmi



Recap of the main contributions

e Extensive empirical study:

o It is an extensive study, training over 400 models (ranging from 70 million to 16 billion
parameters) on varying token counts. This analysis models the relationship between model
size, training tokens, and performance, revealing that many large models are significantly
undertrained for their size.

e Less compute for inference and fine-tuning:
o The study shows that compute-optimal models like Chinchilla offer practical advantages.
Despite being smaller, Chinchilla outperforms larger models and requires less compute for
inference and fine-tuning, making it ideal for compute-limited applications.

A2 Hamoud Alhazmi



Strengths

- Clarity: It is well-written, clearly explaining the methods used to explore the relationship between
compute, model size, and data. It presents three approaches for estimating optimal trade-offs, with a
well-motivated introduction and convincing empirical results.

- Quality: High-quality paper, with over 400 models trained to validate the hypothesis. It challenges
existing assumptions and introduces Chinchilla, which outperforms larger models. Broad benchmark
evaluations strengthen the conclusions.

- Originality: It advances compute-efficient language model training by proposing equal scaling of
model size and data, challenging conventional approaches and setting a new direction for LLM
design.

/2: Hamoud Alhazmi



Strengths

- Soundness: The methodology is sound, with conclusions well-supported by extensive
experimentation.

- Broader Impact: The paper has significant implications for LLM development, potentially shifting the
focus toward more data-efficient and cost-effective model training.

A2 Hamoud Alhazmi



Weaknesses

- Power-law assumption: One minor concern could be the reliance on the power-law assumption for
scaling relationships, but the authors acknowledge this limitation and suggest potential future
directions for refining these scaling laws.

- Limited training runs at large scales: Despite extensive experimentation with over 400 models,
the paper provides only two large-scale training runs (Chinchilla and Gopher), limiting insight into
how the scaling laws apply across intermediate model sizes and compute budgets.

- The paper briefly mentions ethical concerns like biases, toxicity, and privacy but lacks in-depth
exploration. A more thorough analysis of these issues would have enhanced its impact on
responsible Al discussions.

/2: Hamoud Alhazmi



Review

- Novelty (8/10): It offers new insights by challenging existing scaling laws and
proposing compute-optimal training strategies, providing a fresh approach to
model size and token scaling.

- Correctness (9/10): It is backed by extensive experiments, with sound
methodology and strong empirical evidence.

- Clarity (7.5/10): Most of the parts are clearly explained.

- Significance (10/10): Significant implications for future LLM development.

- Recommendation: Accept.

/2: Hamoud Alhazmi



Archaeologist
Junjie Zhang



Gopher (2022)

Model Layers Number Heads Key/Value Size djcqee MaxLR Batch Size

44M 8 16 32 512 6 x 1074 0.25M
117M 12 12 64 768 6x 104 0.25M
417M 12 12 128 1,536 2x107* 0.25M
1.4B 24 16 128 2,048 2x10* 0.25M
7.1B 32 32 128 4,096 1.2x10™* 2M
Gopher 280B 80 128 128 16,384 4x10™ 3M — 6M

Table 1 | Model architecture details. For each model, we list the number of layers, the key/value size,
the bottleneck activation size d,,,q4;, the maximum learning rate, and the batch size. The feed-forward
size is always 4 X dyodel-

Ref: Rae, Jack W.,, et al. "Scaling language models: Methods, analysis & insights from training gopher." arXiv preprint arXiv:2112.11446 (2021).



Gopher (2022)
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Figure 4 | 280B vs best performance up to 7.1B across different tasks. We compare the performance
of Gopher to the best performance of our smaller models up to 7.1B. In nearly every case, Gopher
outperforms the best smaller model’s performance. Small gains come from either scale not improving
results substantially or the smaller models already being very performant. Language modelling
improvements are in BPB and the rest are in terms of accuracy.



Scaling Laws for Neural Language Models (2020)
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Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute?|used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

Smooth power laws: Performance has a power-law relationship with each of the three scale factors
N, D, C when not bottlenecked by the other two, with trends spanning more than six orders of
magnitude. We observe no signs of deviation from these trends on the upper end, though performance
must flatten out eventually before reaching zero loss.

Ref: Kaplan, Jared et al. “Scaling Laws for Neural Language Models.” ArXiv abs/2001.08361 (2020): n. pag.



Scaling Laws for Neural Language Models (2020)

Larger models require fewer samples The optimal model size grows smoothly
to reach the same performance with the loss target and compute budget

Line color indicates

Test Loss 10 number of parameters Large models are more

[ sample-efficient than small
10° 108 10° models, reaching the same

8 level of performance with

«——10°Params fewer optimization steps
(Figure 2) and using fewer
d Compute-efficient data points (Figure 4)
10°Params — training stops far
) short of convergence
107 100 101 100 10 104 100
Tokens Processed Compute (PF-days)

Figure 2 We show a series of language model training runs, with models ranging in size from 10° to 10°
parameters (excluding embeddings).

PF-day = 1015 x 24 x 3600 = 8.64 x 1019 floating point operation



Scaling Laws for Neural Language Models (2020)
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Figure 4 Left: The early-stopped test loss L(IN, D) varies predictably with the dataset size D and model
size N according to Equation (1.5). Right: After an initial transient period, learning curves for all model
sizes N can be fit with Equation (1.6), which is parameterized in terms of Sy, the number of steps when
training at large batch size (details in Section @

Smin— an estimate of the minimal number of training steps needed to reach a given value of the loss.



Scaling Laws for Neural Language Models (2020)

We have observed consistent scalings of language model log-likelihood loss with
non-embedding parameter count N, dataset size D, and optimized training
computation Cmin, as encapsulated in Equations (1.5) and (1.6). Conversely, we
find very weak dependence on many architectural and optimization
hyperparameters. Since scalings with N, D, Cmin are power-laws, there are
diminishing returns with increasing scale.



Scale Efficiently: Insights from Pre-training and Fine-tuning
Transformers.(2020)

We find that scaling laws may differ in upstream and downstream setups. Specifically,
contrary to Kaplan et al. (2020), we find that downstream performance strongly depends
on shape and not only on model size. Hence, pretraining performance may not necessarily
transfer to downstream applications. (Figure 1).

Our findings show that pre-training perplexity can often be a deceiving indicator of
down-stream quality and therefore model building based on upstream perplexity can be
challenging. Scaling laws can differ substantially when considering metrics on actual
downstream fine- tuning. (Figure 1)

Ref: Tay, Yi et al. “Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers.” ArXiv abs/2109.10686 (2021): n. pag.



Scale Efficiently: Insights from Pre-training and Fine-tuning
Transformers.(2020)
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Figure 1: The predictability and unpredictability of pre-training versus fine-tuning. While the
upstream pre-training performance measured by negative log-perplexity scales with model size quite
independently from the model shape, the downstream performance (SuperGlue (avg) score) does not.
This indicates that the shape of models plays an important role on how it performs on the target task
and the performance is not merely a function of parameter size.
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be More Effective than Scaling Model Parameters
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Motivation

Motivation is to explore how “scaling test-time compute” for large language models
(LLMs) can improve their performance, especially on complex tasks, without the
need to increase model size



High-Level Summary of Paper

Paper introduces adaptive strategies (iterative revisions and search-based
methods with reward models) to allocate test-time compute based on task
difficulty, optimizing performance without increasing model size.

Given a fixed generation and compute budget, smaller models can achieve
results comparable to much larger models on challenging tasks through these
strategies

In addition, it examines through experimental design the different scenarios
where a tradeoff between pretraining compute and test-time compute is
advantageous



Key Contributions

1. Explores Novel Adaptive method to allocate test-time compute based on task difficulty
2. Process Reward Models (PRMs) predicts the reward or correctness of each step during test-time

inference. ORM evaluates only the final outcome.
3. Test-time compute can often replace the need to train large LLM models. Highly dependent on the

task.
4. Search vs. Revision Strategies (Combination?): Paper evaluates two approaches: Searching to find

the best answer and Correcting the answer if it is incorrect



Experiment Setup



The Proposed Framework

e  Two Knobs for LLM Distribution Changes
O  Proposer: LLM generates an initial distribution of responses. This proposal distribution can be improved by iterative
revisions or optimization techniques such as reinforcement learning
O Verifier: The verifier scores and selects the best response from multiple proposals. It can evaluate final answers (as in
best-of-N methods) or assess correctness at intermediate steps (using PRM).



Optimization for Scaling Equation

Q:;,a*(q)(N) = argmax, (Ey~Target(9,N,q) [ﬂy=y*(q)]) ) (1)

where y*(q) denotes the ground-truth correct response for g, and 9; y*(¢)(N) represents the test-time
compute-optimal scaling strategy for the problem q with compute budget N.



Assessing the Difficulty of a Question (MATH Dataset)

e (Categorize each question into one of five difficulty levels based on the
model’s pass@1 rate (the likelihood of generating the correct answer in the
first attempt).

e Difficulties were generated using 2048 samples per question.

e Proposes a Model-predicted difficulty (using verifier predictions) and Oracle
Difficulty (ground-truth answer-based) methods for difficulty estimation



1st Experiment: Scaling Test-Time
Compute via Verifiers



Comparing PRM Search Methods
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Figure 2 | Comparing different PRM search methods. Left: Best-of-N samples N full answers and then selects the best
answer according to the PRM final score. Center: Beam search samples N candidates at each step, and selects the top M
according to the PRM to continue the search from. Right: lookahead-search extends each step in beam-search to utilize a k-step
lookahead while assessing which steps to retain and continue the search from. Thus lookahead-search needs more compute.



Results

e “Smaller generation budgets, beam search
significantly out-performs best-of-N.
However, as the budget is scaled up,
these improvements greatly diminish, with
Beam search often underperforming the
best-of-N baseline.”

e ‘“Lookahead-search generally
underperforms other methods at the same
generation budget, likely due to the
additional computation inducted by
simulating the lookahead rollouts”

Comparing PRM Search Methods Comparing Beam Search and Best-of-N by Difficulty Level
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Figure 3 | Left: Comparing different methods for conducting search against PRM verifiers. We see that at low generation
budgets, beam search performs best, but as we scale the budget further the improvements diminish, falling below the best-of-N
baseline. Lookahead-search generally underperforms other methods at the same generation budget. Right: Comparing beam
search and best-of-N binned by difficulty level. The four bars in each difficulty bin correspond to increasing test-time compute
budgets (4, 16, 64, and 256 generations). On the easier problems (bins 1 and 2), beam search shows signs of over-optimization
with higher budgets, whereas best-of-N does not. On the medium difficulty problems (bins 3 and 4), we see beam search
demonstrating consistent improvements over best-of-N.



2nd Experiment: Refining the Proposal
Distribution



Different Refinement Approaches
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Figure 5 | Parallel sampling (e.g., Best-of-N) verses sequential revisions. Left: Parallel sampling generates N answers
independently in parallel, whereas sequential revisions generates each one in sequence conditioned on previous attempts. Right:
In both the sequential and parallel cases, we can use the verifier to determine the best-of-N answers (e.g. by applying best-of-N
weighted). We can also allocate some of our budget to parallel and some to sequential, effectively enabling a combination of the

two sampling strategies. In this case, we use the verifier to first select the best answer within each sequential chain and then
select the best answer accross chains.



Results

“We find that there exists a tradeoff
between sequential (e.g. revisions) and
parallel (e.g. standard best-of-N) test-time
computation, and the ideal ratio of
sequential to parallel test-time compute
depends critially on both the compute
budget and the specific question at hand.”
“Specifically, easier questions benefit from
purely sequential test-time compute,
whereas harder questions often perform
best with some ideal ratio of sequential to
parallel compute.”
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Figure 6 | Left: Our revision model’s pass@1 at each revision step. Pass@1 gradually improves after each revision step,
even improving beyond the 4 revision steps that it was trained for. We estimate pass@1 at each step by by averaging over the
performance of 4 revision trajectories of length 64 for each question in the test-set. Right: Sequential vs parallel sampling
from the revision model. Comparing performance when generating N initial answers in parallel from our revision model, verses
generating N revisions sequentially, with the model. When using both the verifier and majority voting to select the answer, we
see that generating answers sequentially with the revision model narrowly outperforms generating them in parallel.
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Figure 7 | Left: Varying the ratio of the generation budget all q ial r to verses parallel samples. Each
line represents a fixed generation budget as the ratio is changed. We use the verifier for answer selection. We see that while
increased sequential revisions tends to outperform more parallel compute, at higher generation budgets there is an ideal ratio
that strikes a balance between the two extremes. Right: Varying the sequential to parallel ratio for a generation budget of
128 across difficulty bins. Using verifier-based selection, we see that the easier questions attain the best performance with full
sequential compute. On the harder questions, there is an ideal ratio of sequential to parallel test-time compute.




Bringing it all Together



Conclusion:

L For easy and medium tasks, test-time compute often does not require the need for additional pretraining. However, for more

challenging tasks or when the inference requirements are high, increasing pretraining is generally more effective at boosting
model performance
e  Pretraining is often necessary to improve results on more difficult problems that fall outside of the model's trained abilities

Revisions PRM Search
100 :
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Proportional to Inference FLOPs Proportional to Inference FLOPs
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Figure 9 | Tradeoff between pretraining and test-time compute in a FLOPs-matched evaluation. Each line represents the
performance of scaling test-time compute with our compute-optimal policy in each oracle difficulty bin. We plot the results for
revisions on the left and search on the right. The stars represent the greedy pass@1 performance of a base model pretrained
with ~ 14 times more parameters. We plot test-time compute budget on the x-axis, and place the stars at three different
locations along the x-axis, each corresponding to the FLOPs equivalent point of comparison between scaling parameters and
scaling test-time compute for three different inference compute loads (e.g. R = %ﬂm—“ﬁ). If the star is below the line, this

pretrain

implies that it is more effective to use test-time compute than to scale model parameters, and if the star is above the line this
implies that scaling parameters is more effective. We see that on the easy questions or in settings with a lower inference load
(e.g. R << 1), test-time compute can generally outperform scaling model parameters. However, on the harder questions or in
settings with a higher inference load (e.g. R >> 1), pretraining is a more effective way to improve performance.
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Strengths

- Method for generating sequential revision data using high-temperature batch
generation and subsequent manual chain construction.

- Use of a difficulty-based scaling ratio between sequential and parallel
sampling. (at the same time is a weakness)

- Comprehensive evaluation of various approaches, including search strategies
and verifiers.



Weaknesses

- Heavy reliance on accurate difficulty assessment; misjudgment impacts
results significantly. Flawed separation method

- Limited explanation on how problem difficulty is determined compared to
detailed search algorithm descriptions.

- Evaluation limited to the MATH dataset.

- Limited/insufficient depth on verifier training methods.

- Lack of clarity/Not clear to read. Way too many fancy words

- Focuses more on explaining search algorithms than highlighting novel
contributions.

- Some questionable choices



Example

- When combining techniques, why apply verifier twice instead of once for all?
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Future Directions

Scalability and Generalization

e How would optimal test-time compute do across different tasks?
The question is whether the same approach can be applied effectively to various problem
types, or if adjustments are needed. Do strategies that work in one area, like

mathematics, generalize well to others, such as Code Generation & Understanding or
Logical Reasoning?



Future Directions

Scalability and Generalization

e How would optimal test-time compute do across different tasks?
The question is whether the same approach can be applied effectively to various problem
types, or if adjustments are needed. Do strategies that work in one area, like
mathematics, generalize well to others, such as Code Generation & Understanding or
Logical Reasoning?

e How would compute-optimal scaling and process-based verifier models
impact larger/smaller models?
Would applying these strategies to larger/smaller models lead to significant
improvements in accuracy and efficiency, or would the gains be marginal due to the
models’ inherent capabilities? Could these techniques further optimize

computational resources in large-scale models, especially when dealing with
complex tasks?



Future Directions

Optimization of Test-Time Compute Strategies
e How would other search algorithms like Monte Carlo Tree Search affect
test-time compute optimization?
Search algorithms like MCTS, beam search, or lookahead search could explore multiple

response paths at test-time. The question is whether these methods can enhance output
refinement and accuracy without significantly increasing computational costs.

Lookahead Search

Continue Search from




Future Directions

Optimization of Test-Time Compute Strategies
e How would other search algorithms like Monte Carlo Tree Search affect
test-time compute optimization?
Search algorithms like MCTS, beam search, or lookahead search could explore multiple

response paths at test-time. The question is whether these methods can enhance output
refinement and accuracy without significantly increasing computational costs.

e How would chain-of-thought reasoning compare to their approach?
Would it provide better accuracy or consistency during test-time compute? How can
we implement chain-of-thought reasoning alongside the compute-optimal strategies
in this paper to further enhance performance?



Future Directions

Optimization of Test-Time Compute Strategies
e How would other search algorithms like Monte Carlo Tree Search affect

test-time compute optimization?
Search algorithms like MCTS, beam search, or lookahead search could explore multiple
response paths at test-time. The question is whether these methods can enhance output
refinement and accuracy without significantly increasing computational costs.

e How would chain-of-thought reasoning compare to their approach?
Would it provide better accuracy or consistency during test-time compute? How can
we implement chain-of-thought reasoning alongside the compute-optimal strategies
in this paper to further enhance performance?

e How can we prevent the language model from exploiting the reward model?
Models may exploit weaknesses in the reward model to generate low-quality
outputs. Can integrating strategies like chain-of-thought reasoning or adaptive
feedback help mitigate this and ensure better-quality results?



Future Directions

Adaptive and Dynamic Compute Allocation

e How can scaling with dynamic task difficulty prediction optimize test-time
compute?
This paper estimates task difficulty using model-specific metrics, but future models
could predict task difficulty in real-time. The question is whether dynamically
adjusting compute allocation based on these predictions can lead to more efficient
use of resources, allowing the model to focus computational power only on
challenging tasks while optimizing overall performance.
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