
Scaling
CSE 5539: Advanced Topics in Natural Language Processing

https://shocheen.github.io/courses/advanced-nlp-fall-2024

Logistics

● Project proposal: How did it go?
○ You’ll receive (informal) feedback by Wednesday.

Logistics

● OSC Access: Any issues, questions?

Logistics

● Optional Assignment:
○ Feedback on your presentation (content / skills)

■ Your task: Write a self-review
■ My task: I will suggest improvements (if applicable)(

○ Feedback on the class
■ What you like, what you don’t, format, content, anything else: this will be anonymized.
■ I will implement things that can be immediately addressed.

Today’s goal

Bigger is better?

Part I: Scaling the model (parameter, data, compute)

Part II: Scaling at inference time

Stakeholder

Training Compute-Optimal
Large Language Models

Jordan Hoffman et al., 2023

By Mona Gandhi

Motivation

● Size of large dense transformers → constantly rising
● Challenges:

○ overwhelming computational requirements
○ acquiring high-quality data

Need to understand HOW to scale these models?

Motivation

Kaplan et al [1]

→ Predictable relationship b/w model size and loss
→ Models should not be trained to their lowest point to be compute optimal
→ When computational budget - 10x, suggests model size - 5.5x and training tokens - 1.8x

Issues:

● Use fixed number of training tokens and learning rate for all models
● Does not consider the effect of training tokens

 [1] Scaling laws for neural language models, Kaplan et al., 2020

Overview Fewer params with
same compute and
better performance!

Methods

Given a fixed FLOP budget, how should one tradeoff model size and the number
of training tokens?

● Start by training a range of models varying in both model size and training
tokens

● And thus use the resulting training curves to fit an empirical estimator of how
they should scale

Approach 1: Fix model sizes and vary number of training tokens

Vary the number of training tokens for a family of models (70M to 10B params),
training each model for 4 different training sequences.

Approach 2: IsoFLOP profiles

Vary the model size for a fixed set of 9 different training FLOPs (6x1018 to 3x1021)
and consider final training loss for each point.
Answers the question: For a given FLOP budget, what is the optimal param count?

Approach 3: Fitting a parametric loss function

Model all final losses from Approach 1 and 2 as a parametric function of model
param count and training tokens.

Optimal model scaling

Here N → number of params, C → compute cost and D → size of training tokens

Optimal model scaling

Clearly suggests that given the training compute budget for many current LLMs, smaller
models should have been trained on more tokens to achieve the most performant model.

Chinchilla

Optimal model size for Gopher → 40 to 70 B params

Compare Chinchilla to Gopher

● Both have the same number of FLOPs
● Differ in the size of the model and training tokens

Uses less compute for inference and storage compared to Gopher!

Chinchilla - Training as compared to Gopher

● Trained on same dataset as Gopher – MassiveText, slightly different subset
distribution to account for increased number of training tokens.

● Uses AdamW instead of Adam in Gopher.
● Slightly modified SentencePiece Tokenizer, vocab is 94.15% similar to Gopher.

Chinchilla - Evaluation

Chinchilla - Results

Chinchilla - Results

Conclusion

● Trend so far → increase model size w/o increasing number of training tokens.
● Hypothesis: training larger and larger models is resulting into models that are

substantially underperforming compared to what could be achieved with
same compute power.

● Propose 3 predictive approaches → Gopher is over-sized!!
● Chinchilla (70B) outperforms Gopher (280B) and even larger models

Limitations

● Only have two comparable training runs at large scale, do not have
intermediate results.

● Trained on less than one epoch of training data.
● Need of better, high quality training datasets.

○ May introduce ethical and privacy concerns as dataset size increases
● Chinchilla does suffer from bias and toxicity (but less affected than Gopher)

Need for dataset scaling!

Training Compute-Optimal
Large Language Models

Reviewer

🔎: Hamoud Alhazmi

● Equal scaling of model size and training tokens:
○ The authors propose that for compute-optimal training, model size and training tokens should

scale equally—doubling the model size should be matched by doubling the training tokens to
achieve the best performance within a fixed compute budget.

● Chinchilla model:
○ A 70-billion-parameter model trained on 1.4 trillion tokens using the same compute budget as

the larger Gopher (280 billion parameters).
○ Chinchilla outperforms Gopher and other larger models (e.g., GPT-3, Jurassic-1,

Megatron-Turing), showing that bigger models are often over-sized and under-trained.
○ Chinchilla sets state-of-the-art performance on several benchmarks, including a 7%

improvement over Gopher on the MMLU benchmark, with an average accuracy of 67.5%. This
highlights the success of the compute-optimal scaling strategy.

Recap of the main contributions

🔎: Hamoud Alhazmi

● Extensive empirical study:
○ It is an extensive study, training over 400 models (ranging from 70 million to 16 billion

parameters) on varying token counts. This analysis models the relationship between model
size, training tokens, and performance, revealing that many large models are significantly
undertrained for their size.

● Less compute for inference and fine-tuning:
○ The study shows that compute-optimal models like Chinchilla offer practical advantages.

Despite being smaller, Chinchilla outperforms larger models and requires less compute for
inference and fine-tuning, making it ideal for compute-limited applications.

Recap of the main contributions

🔎: Hamoud Alhazmi

Strengths

- Clarity: It is well-written, clearly explaining the methods used to explore the relationship between
compute, model size, and data. It presents three approaches for estimating optimal trade-offs, with a
well-motivated introduction and convincing empirical results.

- Quality: High-quality paper, with over 400 models trained to validate the hypothesis. It challenges
existing assumptions and introduces Chinchilla, which outperforms larger models. Broad benchmark
evaluations strengthen the conclusions.

- Originality: It advances compute-efficient language model training by proposing equal scaling of
model size and data, challenging conventional approaches and setting a new direction for LLM
design.

🔎: Hamoud Alhazmi

Strengths

- Soundness: The methodology is sound, with conclusions well-supported by extensive
experimentation.

- Broader Impact: The paper has significant implications for LLM development, potentially shifting the
focus toward more data-efficient and cost-effective model training.

🔎: Hamoud Alhazmi

Weaknesses

- Power-law assumption: One minor concern could be the reliance on the power-law assumption for
scaling relationships, but the authors acknowledge this limitation and suggest potential future
directions for refining these scaling laws.

- Limited training runs at large scales: Despite extensive experimentation with over 400 models,
the paper provides only two large-scale training runs (Chinchilla and Gopher), limiting insight into
how the scaling laws apply across intermediate model sizes and compute budgets.

- The paper briefly mentions ethical concerns like biases, toxicity, and privacy but lacks in-depth
exploration. A more thorough analysis of these issues would have enhanced its impact on
responsible AI discussions.

🔎: Hamoud Alhazmi

Review

- Novelty (8/10): It offers new insights by challenging existing scaling laws and
proposing compute-optimal training strategies, providing a fresh approach to
model size and token scaling.

- Correctness (9/10): It is backed by extensive experiments, with sound
methodology and strong empirical evidence.

- Clarity (7.5/10): Most of the parts are clearly explained.
- Significance (10/10): Significant implications for future LLM development.
- Recommendation: Accept.

🔎: Hamoud Alhazmi

Archaeologist
Junjie Zhang

Gopher (2022)

1Ref: Rae, Jack W., et al. "Scaling language models: Methods, analysis & insights from training gopher." arXiv preprint arXiv:2112.11446 (2021).

Gopher (2022)

Scaling Laws for Neural Language Models (2020)

Ref: Kaplan, Jared et al. “Scaling Laws for Neural Language Models.” ArXiv abs/2001.08361 (2020): n. pag.

Smooth power laws: Performance has a power-law relationship with each of the three scale factors
N, D, C when not bottlenecked by the other two, with trends spanning more than six orders of
magnitude. We observe no signs of deviation from these trends on the upper end, though performance
must flatten out eventually before reaching zero loss.

Scaling Laws for Neural Language Models (2020)

PF-day = 1015 × 24 × 3600 = 8.64 × 1019 floating point operation

Large models are more
sample-efficient than small
models, reaching the same
level of performance with
fewer optimization steps
(Figure 2) and using fewer
data points (Figure 4)

Scaling Laws for Neural Language Models (2020)

Smin – an estimate of the minimal number of training steps needed to reach a given value of the loss.

Scaling Laws for Neural Language Models (2020)

We have observed consistent scalings of language model log-likelihood loss with
non-embedding parameter count N, dataset size D, and optimized training
computation Cmin, as encapsulated in Equations (1.5) and (1.6). Conversely, we
find very weak dependence on many architectural and optimization
hyperparameters. Since scalings with N, D, Cmin are power-laws, there are
diminishing returns with increasing scale.

Scale Efficiently: Insights from Pre-training and Fine-tuning
Transformers.(2020)

Ref: Tay, Yi et al. “Scale Efficiently: Insights from Pre-training and Fine-tuning Transformers.” ArXiv abs/2109.10686 (2021): n. pag.

We find that scaling laws may differ in upstream and downstream setups. Specifically,
contrary to Kaplan et al. (2020), we find that downstream performance strongly depends
on shape and not only on model size. Hence, pretraining performance may not necessarily
transfer to downstream applications. (Figure 1).

Our findings show that pre-training perplexity can often be a deceiving indicator of
down-stream quality and therefore model building based on upstream perplexity can be
challenging. Scaling laws can differ substantially when considering metrics on actual
downstream fine- tuning. (Figure 1)

●

Scale Efficiently: Insights from Pre-training and Fine-tuning
Transformers.(2020)

Visionary

Training Compute-Optimal
Large Language Models
J. Hoffmann, S. Borgeaud, A. Mensch et al.

 NeurIPS 2022

Paper: arxiv.org/abs/2203.15556 🔭 Sriram Sai Ganesh

AU24 CSE 5539 Presentation

https://arxiv.org/abs/2203.15556

🔭 Sriram Sai Ganesh

Data-Centric Training 📚
● Compute-optimal => lower FLOPs for

identical performance.

● Focus moves to high-quality data for

training

● Data Augmentation Using LLMs –

https://arxiv.org/pdf/2403.02990

● Towards solving a related problem –

How can we tell if something is

AI-generated?

https://arxiv.org/pdf/2403.02990

🔭 Sriram Sai Ganesh

Big model go vroom 🏎 📈
● Larger models, emergent abilities.

○ New SoTA on a variety of task

benchmarks, in succession.

● ‘Golden’ datasets

○ Often a well-kept secret.

● Arms-race like situation*

● No signs of slowing down*

🔭 Sriram Sai Ganesh

Democratizing Frontier Research 🗳
● Resources for SoTA model

development out-of-reach for most

NLP researchers.

○ GPT-4 – ~36M V100 hours;

● Models currently available may not

be fair towards all.

○ Bias considerations

● Towards sustainability.

ai.meta.com/blog/large-language-model-llama-meta-ai/

https://ai.meta.com/blog/large-language-model-llama-meta-ai/

Scaling LLM Test-Time Compute Optimally can
be More Effective than Scaling Model Parameters

Stakeholder
Shantanu

Motivation

Motivation is to explore how “scaling test-time compute” for large language models
(LLMs) can improve their performance, especially on complex tasks, without the
need to increase model size

High-Level Summary of Paper

● Paper introduces adaptive strategies (iterative revisions and search-based
methods with reward models) to allocate test-time compute based on task
difficulty, optimizing performance without increasing model size.

● Given a fixed generation and compute budget, smaller models can achieve
results comparable to much larger models on challenging tasks through these
strategies

● In addition, it examines through experimental design the different scenarios
where a tradeoff between pretraining compute and test-time compute is
advantageous

Key Contributions

1. Explores Novel Adaptive method to allocate test-time compute based on task difficulty
2. Process Reward Models (PRMs) predicts the reward or correctness of each step during test-time

inference. ORM evaluates only the final outcome.
3. Test-time compute can often replace the need to train large LLM models. Highly dependent on the

task.
4. Search vs. Revision Strategies (Combination?): Paper evaluates two approaches: Searching to find

the best answer and Correcting the answer if it is incorrect

Experiment Setup

The Proposed Framework

● Two Knobs for LLM Distribution Changes
○ Proposer: LLM generates an initial distribution of responses. This proposal distribution can be improved by iterative

revisions or optimization techniques such as reinforcement learning
○ Verifier: The verifier scores and selects the best response from multiple proposals. It can evaluate final answers (as in

best-of-N methods) or assess correctness at intermediate steps (using PRM).

Optimization for Scaling Equation

Assessing the Difficulty of a Question (MATH Dataset)

● Categorize each question into one of five difficulty levels based on the
model’s pass@1 rate (the likelihood of generating the correct answer in the
first attempt).

● Difficulties were generated using 2048 samples per question.
● Proposes a Model-predicted difficulty (using verifier predictions) and Oracle

Difficulty (ground-truth answer-based) methods for difficulty estimation

1st Experiment: Scaling Test-Time
Compute via Verifiers

Comparing PRM Search Methods

Results

● “Smaller generation budgets, beam search
significantly out-performs best-of-N.
However, as the budget is scaled up,
these improvements greatly diminish, with
Beam search often underperforming the
best-of-N baseline.”

● “Lookahead-search generally
underperforms other methods at the same
generation budget, likely due to the
additional computation inducted by
simulating the lookahead rollouts”

2nd Experiment: Refining the Proposal
Distribution

Different Refinement Approaches

Results

● “We find that there exists a tradeoff
between sequential (e.g. revisions) and
parallel (e.g. standard best-of-N) test-time
computation, and the ideal ratio of
sequential to parallel test-time compute
depends critially on both the compute
budget and the specific question at hand.”

● “Specifically, easier questions benefit from
purely sequential test-time compute,
whereas harder questions often perform
best with some ideal ratio of sequential to
parallel compute.”

Bringing it all Together

Conclusion:

● For easy and medium tasks, test-time compute often does not require the need for additional pretraining. However, for more
challenging tasks or when the inference requirements are high, increasing pretraining is generally more effective at boosting
model performance

● Pretraining is often necessary to improve results on more difficult problems that fall outside of the model's trained abilities

Reviewer
Adam Ryan

Strengths

- Method for generating sequential revision data using high-temperature batch
generation and subsequent manual chain construction.

- Use of a difficulty-based scaling ratio between sequential and parallel
sampling. (at the same time is a weakness)

- Comprehensive evaluation of various approaches, including search strategies
and verifiers.

Weaknesses

- Heavy reliance on accurate difficulty assessment; misjudgment impacts
results significantly. Flawed separation method

- Limited explanation on how problem difficulty is determined compared to
detailed search algorithm descriptions.

- Evaluation limited to the MATH dataset.
- Limited/insufficient depth on verifier training methods.
- Lack of clarity/Not clear to read. Way too many fancy words
- Focuses more on explaining search algorithms than highlighting novel

contributions.
- Some questionable choices

Example

- When combining techniques, why apply verifier twice instead of once for all?

Review

- Novelty 4.0/5
- Correctness 4.5/5
- Clarity 2.0/5
- Significance 4.0/5
- Recommendation: Tentative Accept

Archaeologist
Zephyr Jiang

Which work inspires this one

- Chain-of-thought prompting
- Self-refine LLM

- Scaling law for training
- Best-of-n sampling

- Searching (Beam-search/DFS/BFS/MCTS) on inference

🏺: Zephyr Jiang

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2407.18219
http://arxiv.org/pdf/2203.15556
https://openai.com/index/measuring-goodharts-law/
https://arxiv.org/abs/2305.10601

Concurrent work/Which work is inspired by this one

- OpenAI’s o1 model
- Training LLM to self-correct
- My class project for this course - application of LLM self-correct

🏺: Zephyr Jiang

https://openai.com/index/introducing-openai-o1-preview/
https://arxiv.org/abs/2409.12917

Visionary
Roozbeh Nahavandi

Future Directions
Scalability and Generalization

● How would optimal test-time compute do across different tasks?
The question is whether the same approach can be applied effectively to various problem
types, or if adjustments are needed. Do strategies that work in one area, like
mathematics, generalize well to others, such as Code Generation & Understanding or
Logical Reasoning?

Future Directions
Scalability and Generalization

● How would optimal test-time compute do across different tasks?
The question is whether the same approach can be applied effectively to various problem
types, or if adjustments are needed. Do strategies that work in one area, like
mathematics, generalize well to others, such as Code Generation & Understanding or
Logical Reasoning?

● How would compute-optimal scaling and process-based verifier models
impact larger/smaller models?

Would applying these strategies to larger/smaller models lead to significant
improvements in accuracy and efficiency, or would the gains be marginal due to the
models’ inherent capabilities? Could these techniques further optimize
computational resources in large-scale models, especially when dealing with
complex tasks?

Future Directions
Optimization of Test-Time Compute Strategies
● How would other search algorithms like Monte Carlo Tree Search affect

test-time compute optimization?
Search algorithms like MCTS, beam search, or lookahead search could explore multiple
response paths at test-time. The question is whether these methods can enhance output
refinement and accuracy without significantly increasing computational costs.

Future Directions
Optimization of Test-Time Compute Strategies
● How would other search algorithms like Monte Carlo Tree Search affect

test-time compute optimization?
Search algorithms like MCTS, beam search, or lookahead search could explore multiple
response paths at test-time. The question is whether these methods can enhance output
refinement and accuracy without significantly increasing computational costs.

● How would chain-of-thought reasoning compare to their approach?
Would it provide better accuracy or consistency during test-time compute? How can
we implement chain-of-thought reasoning alongside the compute-optimal strategies
in this paper to further enhance performance?

Future Directions
Optimization of Test-Time Compute Strategies
● How would other search algorithms like Monte Carlo Tree Search affect

test-time compute optimization?
Search algorithms like MCTS, beam search, or lookahead search could explore multiple
response paths at test-time. The question is whether these methods can enhance output
refinement and accuracy without significantly increasing computational costs.

● How would chain-of-thought reasoning compare to their approach?
Would it provide better accuracy or consistency during test-time compute? How can
we implement chain-of-thought reasoning alongside the compute-optimal strategies
in this paper to further enhance performance?

● How can we prevent the language model from exploiting the reward model?
Models may exploit weaknesses in the reward model to generate low-quality
outputs. Can integrating strategies like chain-of-thought reasoning or adaptive
feedback help mitigate this and ensure better-quality results?

Adaptive and Dynamic Compute Allocation

● How can scaling with dynamic task difficulty prediction optimize test-time
compute?

This paper estimates task difficulty using model-specific metrics, but future models
could predict task difficulty in real-time. The question is whether dynamically
adjusting compute allocation based on these predictions can lead to more efficient
use of resources, allowing the model to focus computational power only on
challenging tasks while optimizing overall performance.

Future Directions

Thank You!

