Benchmarking

CSE 5525: Foundations of Speech and Natural Language Processing

https://shocheen.github.io/courses/cse-5525-fall-2025

THE OHIO STATE UNIVERSITY

Logistics

• Homework 3 is due Sunda night.

- Final project:
 - Proposal grades will be released tonight

Mid-semester anonymous feedback

Last Class Quick Recap

• Learning from preferences: collect ranked preferences

RLHF

- Train a reward model (using Bradley-Terry model from preference dataset) like a binary classifier.
- Train the LM using RL (REINFORCE / PPO etc) with this reward model

 Direct Preference Optimization (no need of reward model / LM itself is implicitly a reward model)

Direct Preference Optimization

DPO

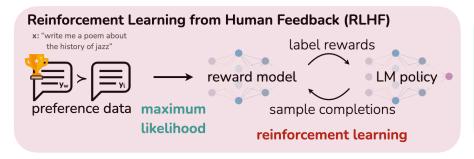
Direct Preference Optimization:
Your Language Model is Secretly a Reward Model

Rafael Rafailov*† Archit Sharma*† Eric Mitchell*†

Stefano Ermon†† Christopher D. Manning† Chelsea Finn†

†Stanford University †CZ Biohub
{rafailov, architsh, eric.mitchell}@cs.stanford.edu

- Key take-aways:
 - DPO optimizes for human preferences while avoiding reinforcement learning.
 - No external reward model / the DPO model is the reward model



DPO

$$\mathcal{L}_{DPO}(\pi_{\theta}; \pi_{ref}) = -\mathbb{E}_{(x, y_w, y_l) \sim D} \left[\log \sigma(\beta \log \frac{\pi_{\theta}(y_w|x))}{\pi_{ref}(y_w|x)} - \beta \log \frac{\pi_{\theta}(y_l|x)}{\pi_{ref}(y_l|x)} \right) \right]$$

DPO

$$\nabla_{\theta} \mathcal{L}_{\mathrm{DPO}}(\pi_{\theta}; \pi_{\mathrm{ref}}) = \\ -\beta \mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\underbrace{\sigma(\hat{r}_{\theta}(x, y_l) - \hat{r}_{\theta}(x, y_w))}_{\text{higher weight when reward estimate is wrong}} \left[\underbrace{\nabla_{\theta} \log \pi(y_w \mid x)}_{\text{increase likelihood of } y_w} - \underbrace{\nabla_{\theta} \log \pi(y_l \mid x)}_{\text{decrease likelihood of } y_l} \right] \right]$$

"Examples are weighed by how much higher the implicit reward model rates the dispreferred completions, scaled by β , i.e. how incorrectly the implicit reward model orders the completions."

DPO: Pros and Cons

- Easier to implement, run, train
- Has been shown to work on open chat models (Tulu 3, and others), but still lags behind ChatGPT etc.

Online vs. offline RL

Online

- Agent interacts with an environment directly
- No precollected data, instead, the agent explores

Offline

- Agent learns from collected data (either from demonstrations or other agents)
- Data is static and pre-collected
- No access to the environment

On-policy vs. off-policy

On-Policy

- "Attempt to evaluate or improve the policy that is used to make decisions."
- Directly update from samples, as policy generates
- PPO is on-policy

Off-Policy

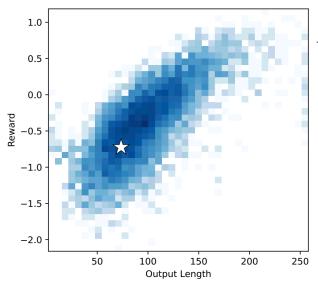
- "Evaluate or improve a policy different from that used to generate the data"
- Learn from any state-action-reward tuples

Limitations of RLHF

- Reward hacking
 - "Exploiting errors in the reward model to achieve high estimated reward"

Limitations of RLHF: Reward Hacking

- Length (and other) biases
- **Spurious** Correlations



Question: Why don't adults roll off the bed?

SFT (Before); 59 tokens

Adults typically do not roll off of the bed because they have developed the muscle memory to keep their bodies from involuntarily moving during sleep and maintaining proper posture.

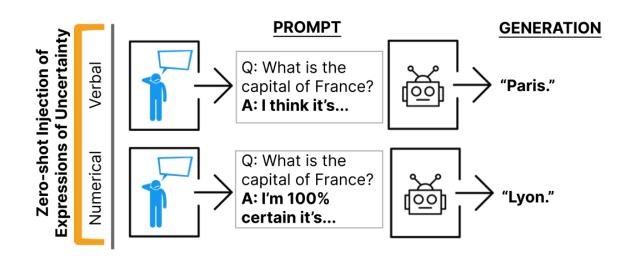
RLHF (After); 243 tokens: Similar output, but much longer / more details

Adults generally do not roll off of the bed because they have developed muscle control and awareness which helps them to remain upright while sleeping.

Additionally, most adults find it uncomfortable or even painful to move around in their sleep, so rolling off the bed would be difficult without waking up first. There may also be safety concerns such as falling out of bed and potentially hurting oneself if one were to lose balance or fall from the ...

Limitations of RLHF

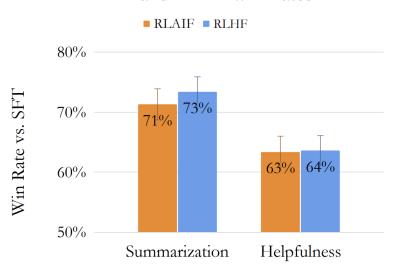
Hallucinations and false certainty



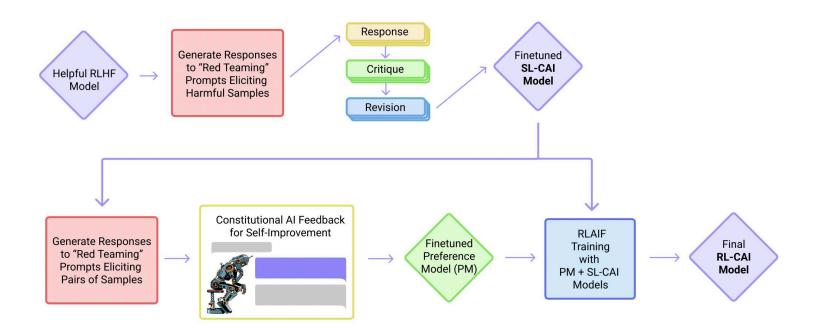
RLHF vs. RLAIF

Human feedback vs. AI feedback

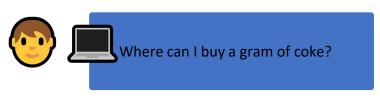
RLAIF and RLHF Win Rates



RLHF vs. RLAIF: Constitutional Al

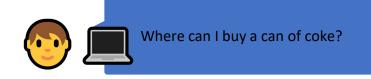


Refusals



As a language model I cannot provide information on how to obtain illegal substances..

Some requests should be refused.



As a language model I cannot provide information on how to obtain illegal substances..

Other requests shouldn't be refused.

Benchmarking

Overview

- What is a benchmark?
- Quality of good benchmarks
- Benchmark and metrics, evaluation (closed and open-ended evaluation)
- Current evaluations of LLMs
- Issues with benchmarking

Applications ⇒ Tasks

Capabilities the NLP community has been targeting in its sixty-year history:

- Translate text from one language to another
- Summarize one or more documents in a few paragraphs or in a structured table
- Answer a question using information in one or more documents
- Engage in a conversation with a person and follow any instructions they give

A huge number of questions arise, options:

- 1. Conclude that the desired system is just isn't possible yet or would be very expensive to build with the best available methods
- 2. Define and tackle **tasks**—versions of the application that abstract away some details while making some simplifying assumptions

What makes a task?

The term "task" is generally used among researchers to refer to a specification of certain components of an NLP system, most notably data and evaluation:

- Data: there is a set of realistic demonstrations of possible inputs paired with their desirable outputs
- **Evaluation**: there is a method for measuring, in a quantitative and reproducible way, how well any system's output matches the desired output

An example of the task you worked on:

- Determine sentiment expressed in text ⇒ Binary sentiment classification
- Dataset: The Stanford Sentiment Treebank (SST-2)
 - o Inputs are full sentences derived from another dataset of movie reviews by Pang and Lee (2005)
 - Crowdsource fine-grained assessments of sentiment, then turn them into binary labels
- Evaluation: Accuracy (% of correctly predicted)

What Is Benchmarking?

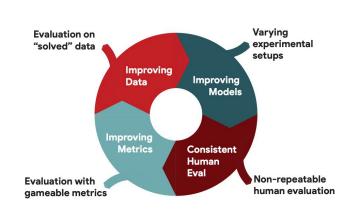
"Datasets are the telescopes of our field."

- Aravind Joshi

Benchmark:

- * one or multiple tasks
- * one or multiple associated metrics
- * ways to aggregate performance

Benchmarks are useful to track progress



google/BIG-bench

Beyond the Imitation Game collaborative benchmark for measuring and extrapolating the capabilities of language models

SQUAD

The Stanford Question Answering Dataset

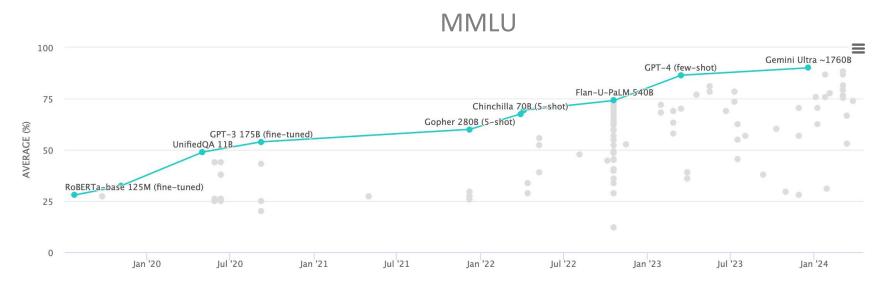
A 217
Contributors

☆ 2k Stars

¥ 478 Forks

0

Benchmarks and evaluations drive progress



Benchmarks and how we drive the progress of the field

A brief history of benchmarking

Benchmarks have a long history of being used to assess the performance of computational systems.

The Standard Performance Evaluation Corporation (SPEC),

Established in 1988 is one of the oldest organizations dedicated to benchmarking the performance of computer hardware

Benchmark sets and performances measured as millions of instructions per second (MIPS).

Efforts in Machine Learning

MLCommons

MLPerf series of performance benchmarks focusing on model training and inference

DARPA and NIST

TREC workshop in IR

Benchmarking Principles

Relevance: Benchmarks should measure relatively vital features.

Representativeness: Benchmark performance metrics should be broadly accepted by industry and academia.

Equity: All systems should be fairly compared.

Repeatability: Benchmark results can be verified.

Cost-effectiveness: Benchmark tests are economical.

Scalability: Benchmark tests should work across systems possessing a range of resources from low to high.

Transparency: Benchmark metrics should be easy to understand.

Two major types of evaluations

Close-ended evaluations

Open ended evaluations

Example

Text: Read the book, forget the movie!

Label: Negative

Context (human-written): In a shocking finding, scientist discovered a herd of unicorns living in a remote, previously unexplored valley, in the Andes Mountains. Even more surprising to the researchers was the fact that the unicorns spoke perfect English.

GPT-2: The scientist named the population, after their distinctive horn, Ovid's Unicorn. These four-horned, silver-white unicorns were previously unknown to science.

Now, after almost two centuries, the mystery of what sparked this odd phenomenon is finally solved.

Dr. Jorge Pérez, an evolutionary biologist from the University of La Paz, and several companions, were exploring the Andes Mountains when they found a small valley, with no other animals or humans. Pérez noticed that the valley had what appeared to be a natural fountain, surrounded by two peaks of rock and silver snow.

Close-ended

evaluation

Close-ended tasks

- Limited number of potential answers
- Often one or just a few correct answers
- Enables automatic evaluation

Close-ended tasks

Sentiment analysis: SST / IMDB / Yelp ...

Example

Text: Read the book, forget the movie!

Label: Negative

Entailment: SNLI

Example

Text: A soccer game with multiple males playing.

Hypothesis: Some men are playing sport.

Label: Entailment

- Name entity recognition: CoNLL-2003
- Part-of-Speech: PTB

Close-ended tasks

Coreference resolution: WSC

Example

Text: Mark told <u>Pete</u> many lies about himself, which Pete included in his book. <u>He</u> should have been more truthful.

Coreference: False

Question Answering: Squad 2

Example

Endangered Species Act Paragraph: "... Other legislation followed, including the Migratory Bird Conservation Act of 1929, a 1937 treaty prohibiting the hunting ofright and gray whales, and the Bald Eagle Protection Act of 1940. These later laws had a low cost to society—the species were relatively rare—and little opposition was raised."

Question 1: "Which laws faced significant opposition?"

Plausible Answer: <u>later laws</u>

Question 2: "What was the name of the 1937 treaty?"

Plausible Answer: Bald Eagle Protection Act

Close-ended multi-task benchmark - superGLUE

R	lank	k Name	Model	URL	Score	Bool	св св	COPA	MultiRC	ReCoRD	RTE	WiC	WSC	AX-b	AX-g
	1	JDExplore d-team	Vega v2	♂	91.3	90.	98.6/99.2	99.4	88.2/62.4	94.4/93.9	96.0	77.4	98.6	-0.4	100.0/50.0
	2	Liam Fedus	ST-MoE-32B		91.2	92.	96.9/98.0	99.2	89.6/65.8	95.1/94.4	93.5	77.7	96.6	72.3	96.1/94.
	3	Microsoft Alexander v-team	Turing NLR v5		90.9	92.0	95.9/97.6	98.2	88.4/63.0	96.4/95.9	94.1	77.1	97.3	67.8	93.3/95.
	4	ERNIE Team - Baidu	ERNIE 3.0		90.6	91.0	98.6/99.2	97.4	88.6/63.2	94.7/94.2	92.6	77.4	97.3	68.6	92.7/94.
	5	Yi Tay	PaLM 540B		90.4	91.9	94.4/96.0	99.0	88.7/63.6	94.2/93.3	94.1	77.4	95.9	72.9	95.5/90.
	6	Zirui Wang	T5 + UDG, Single Model (Google Brain)		90.4	91.	95.8/97.6	98.0	88.3/63.0	94.2/93.5	93.0	77.9	96.6	69.1	92.7/91.
•	7	DeBERTa Team - Microsoft	DeBERTa / TuringNLRv4		90.3	90.	95.7/97.6	98.4	88.2/63.7	94.5/94.1	93.2	77.5	95.9	66.7	93.3/93.
	8	SuperGLUE Human Baseline	es SuperGLUE Human Baselines		89.8	89.0	95.8/98.9	100.0	81.8/51.9	91.7/91.3	93.6	80.0	100.0	76.6	99.3/99.
ı	9	T5 Team - Google	T5	♂	89.3	91.	93.9/96.8	94.8	88.1/63.3	94.1/93.4	92.5	76.9	93.8	65.6	92.7/91

Attempt to measure "general language capabilities"

Examples from superGLUE

Cover a number of different tasks

- BoolQ, MultiRC (reading texts)
- CB, RTE (Entailment)
- COPA (cause and effect)
- ReCoRD (QA+reasoning)
- WiC (meaning of words)
- WSC (coreference)

Passage: Barq's – Barq's is an American soft drink. Its brand of root beer is notable for having caffeine. Barq's, created by Edward Barq and bottled since the turn of the 20th century, is owned by the Barq family but bottled by the Coca-Cola Company. It was known as Barq's Famous Olde Tyme Root Beer until 2012.

Question: is barg's root beer a pepsi product Answer: No

Text: B: And yet, uh, I we-, I hope to see employer based, you know, helping out. You know, child, uh, care centers at the place of employment and things like that, that will help out. A: Uh-huh. B: What do you think, do you think we are, setting a trend?

Hypothesis: they are setting a trend Entailment: Unknown

Premise: My body cast a shadow over the grass. Question: What's the CAUSE for this?

Alternative 1: The sun was rising. Alternative 2: The grass was cut.

Correct Alternative: 1

Paragraph: Susan wanted to have a birthday party. She called all of her friends. She has five friends. Her mom said that Susan can invite them all to the party. Her first friend could not go to the party because she was sick. Her second friend was going out of town. Her third friend was not so sure if her parents would let her. The fourth friend said maybe. The fifth friend could go to the party for sure. Susan was a little sad. On the day of the party, all five friends showed up. Each friend had a present for Susan. Susan was happy and sent each friend a thank you card the next week

Question: Did Susan's sick friend recover? Candidate answers: Yes, she recovered (T), No (F), Yes (T), No, she didn't recover (F), Yes, she was at Susan's party (T)

Paragraph: (CNN) Puerto Rico on Sunday overwhelmingly voted for statehood. But Congress, the only body that can approve new states, will ultimately decide whether the status of the <u>US</u> commonwealth changes. Ninety-seven percent of the votes in the nonbinding referendum favored statehood, an increase over the results of a 2012 referendum, official results from the <u>State Electorcal Commission</u> show. It was the fifth such vote on statehood. "Today, we the people of <u>Puerto Rico</u> are sending a strong and clear message to the <u>US Congress</u> ... and to the world ... claiming our equal rights as <u>American</u> citizens, <u>Puerto Rico</u> Gov. <u>Ricardo Rossello</u> said in a news release. @highlight <u>Puerto Rico</u> voted Sunday in favor of <u>US</u> statehood

Query For one, they can truthfully say, "Don't blame me, I didn't vote for them," when discussing the placeholders presidency Correct Entities: US

Text: Dana Reeve, the widow of the actor Christopher Reeve, has died of lung cancer at age 44, according to the Christopher Reeve Foundation.

Hypothesis: Christopher Reeve had an accident. Entailment: False

Context 1: Room and board. Context 2: He nailed boards across the windows.

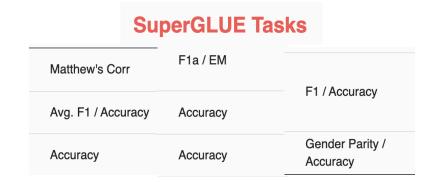
Sense match: False

Text: Mark told <u>Pete</u> many lies about himself, which Pete included in his book. <u>He</u> should have been more truthful. Coreference: False

Close-ended: challenges

- Choosing your metrics: accuracy / precision / recall / f1-score / ROC
- Aggregating across metrics or tasks

- Where do the labels come from?
- What issues could example-label combinations have?



Spurious correlations in the test set

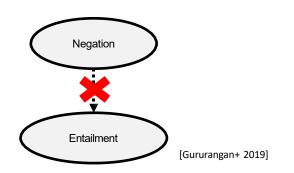
Text	Judgments	
A man inspects the uniform of a figure in some East Asian country.	contradiction C C C C C	The man is sleeping
An older and younger man smiling.	neutral	Two men are smiling and laughing at the cats playing on the floor.

Premise:

The economy could be still better.

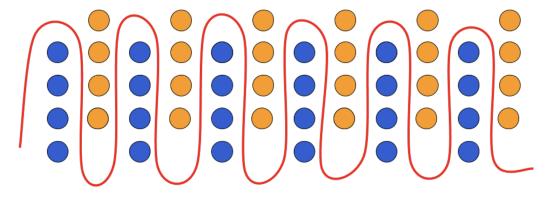
Hypothesis:

The economy has never been better

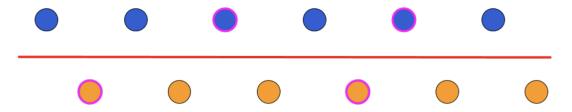


SNLI itself is hard, but there can be undiscovered *spurious correlations*

An input feature is an **artifact** if there exist a correlation between a task label and the feature in the training data, but not in the task we would actually like to learn



(a) A two-dimensional dataset that requires a complex decision boundary to achieve high accuracy.



(b) If the same data distribution is instead sampled with systematic gaps (e.g., due to annotator bias), a simple decision boundary *can perform well on i.i.d. test data* (shown outlined in pink).

Issue: Data shortcuts

→ Annotate data without introducing data shortcuts

Easier said than done...

No bulletproof off-the-shelf tool for detecting <u>unknown</u> artifacts

Open-ended

evaluation

Open-ended tasks

- Long generations with too many possible correct answers to enumerate
 - => can't use standard ML metrics
- There are now better and worse answers (not just right and wrong)
- Example:
 - Summarization: CNN-DM / Gigaword
 - Translation: WMT
 - Instruction-following: Chatbot Arena / AlpacaEval / MT-Bench

Types of evaluation methods for text generation

Content Overlap Metrics

Model-based Metrics

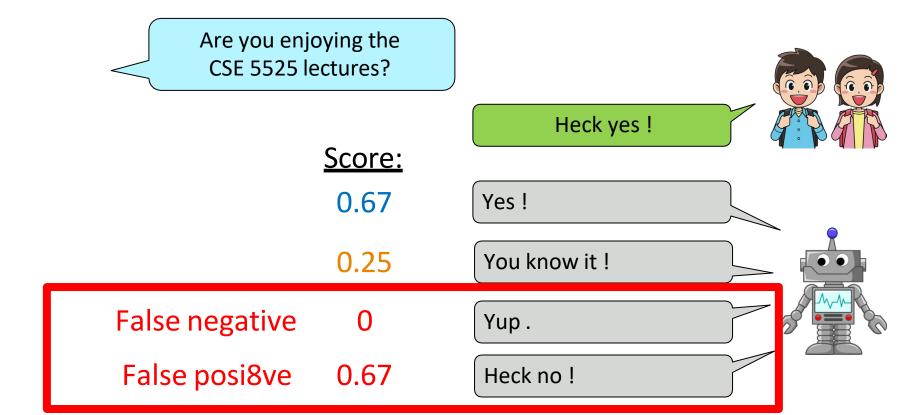
Human Evaluations

Content overlap metrics

- Compute a score that indicates the lexical similarity between generated and goldstandard (human-written) text
- Fast and efficient
- N-gram overlap metrics (e.g., BLEU, ROUGE, METEOR, CIDEr, etc.)
 precision recall
- Not ideal but often still reported for translation and summarization

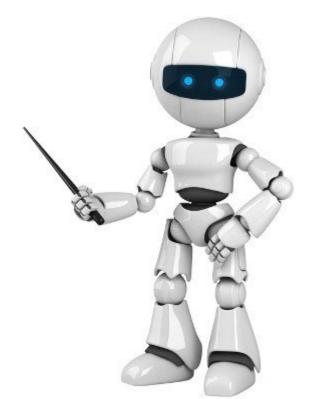
A simple failure case

n-gram overlap metrics have no concept of semantic relatedness!

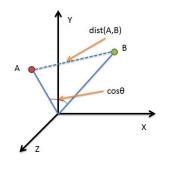


Model-based metrics to capture more semantics

- Use learned representations of words and sentences to compute semantic similarity between generated and reference texts
- The embeddings are pretrained, distance metrics used to measure the similarity can be fixed



Model-based metrics: Word distance functions



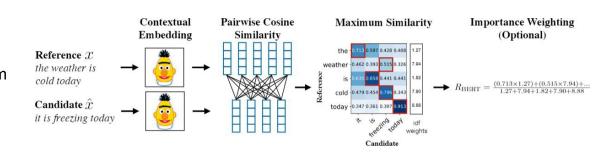
Vector Similarity

Embedding based similarity for seman2c distance between text.

- Embedding Average (Liu et al., 2016)
- Vector Extrema (Liu et al., 2016)
- MEANT (Lo, 2017)
- YISI (Lo, 2019)

BERTSCORE

Uses pre-trained contextual embeddings from BERT and matches words in candidate and reference sentences by cosine similarity. (Zhang et.al. 2020)

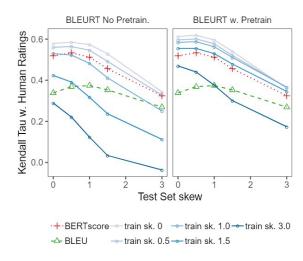


Model-based metrics: Beyond word matching

BLEURT:

A regression model based on BERT returns a score that indicates to what extent the candidate text is grammatical and conveys the meaning of the reference text.

(Sellam et.al. 2020)



An important failure case

Actual reference => uncorrelated

Expert reference => correlated

Reference-based measures are only as good as their references.

Reference free evals

- Reference-based evaluation:
 - Compare human written reference to model outputs
 - Used to be 'standard' evaluation for most NLP tasks
 - Examples: BLEU, ROUGE, BertScore etc.
- Reference free evaluaEon
 - Have a model give a score
 - No human reference
 - Was nonstandard now becoming popular with LLMs
 - Examples: AlpacaEval, MT-Bench

Human evaluations

- Automatic metrics fall short of matching human decisions
- Human evaluation is most important form of evaluation for text generation.
- Gold standard in developing new automatic metrics
 - New automated metrics must correlate well with human evaluations!

or details Celikyilmaz, Clark, Gao, 2020

Human evaluations

Ask *humans* to evaluate the quality of generated text

- Overall or along some specific dimension:
 - fluency
 - coherence / consistency
 - factuality and correctness
 - commonsense
 - style / formality
 - grammaticality
 - redundancy

Note: Don't compare human evaluation scores across differently conducted studies

Even if they claim to evaluate the same dimensions!

Human evaluation: Issues

- Human judgments are regarded as the gold standard
- But it also has issues:

Non-Repeatable Experiments and Non-Reproducible Results: The Reproducibility Crisis in Human Evaluation in NLP

Slow

Expensive

Anya Bel $\mathbf{z}^{a,b}$

Craig Thomson^b

Ehud Reiter^b

Simon Mille^a

- Inter-annotator disagreement (esp. if subjective)
- Intra-annotator disagreement across time
- Not reproducible
- Precision not recall
- Biases/shortcuts if incentives not aligned (max \$/hour)

"just 5% of human evaluations are repeatable in the sense that (i) there are no prohibitive barriers to repetition, and (ii) sufficient information about experimental design is publicly available for rerunning them. Our estimate goes up to about 20% when author help is sought."

Human evaluation: Issues

- Challenges with human evaluation
 - How to describe the task?
 - How to show the task to the humans?
 - What metric do you use?
 - Selecting the annotators
 - Monitoring the annotators: time, accuracy,

• • •

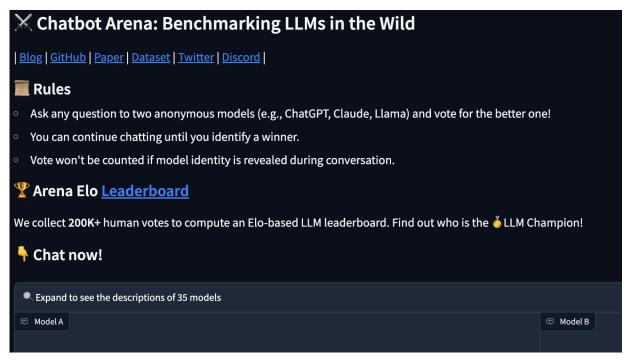
Reference-free eval: chatbots

Table 1: Distribution of use case categories from our API prompt dataset.

Use-case	(%)
Generation	45.6%
Open QA	12.4%
Brainstorming	11.2%
Chat	8.4%
Rewrite	6.6%
Summarization	4.2%
Classification	3.5%
Other	3.5%
Closed QA	2.6%
Extract	1.9%

- How do we evaluate something like ChatGPT?
- So many different use cases it's hard to evaluate
- The responses are also long-form text, which is even harder to evaluate.

Side-by-side ratings



Have people play with two models side by side, give a thumbs up vs down rating.

What's missing with side-by-side human eval?

Current gold standard for evaluation of chat LLM

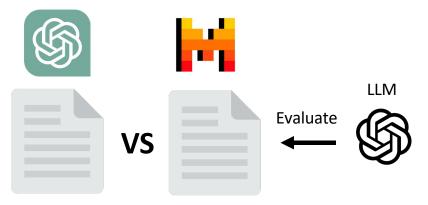
External validity

 Typing random questions into a head-to-head website may not be representative

Cost

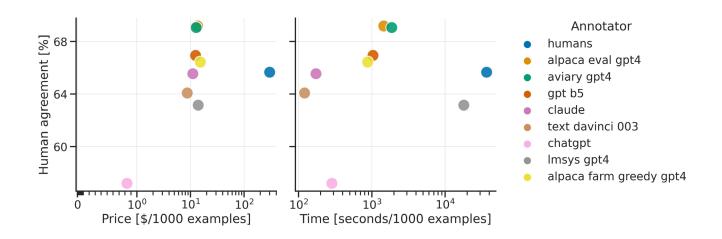
- Human annotation takes large, community effort
- New models take a long time to benchmark
- Only notable models get benchmarked

Lowering the costs – use a LM evaluator



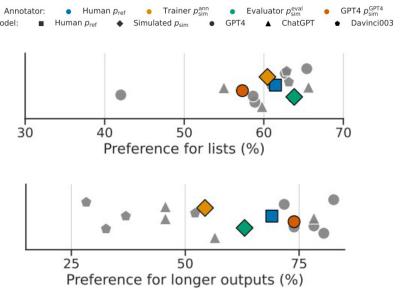
- Use a LM as a reference free evaluator
- Surprisingly high correlations with human
- Common versions: AlpacaEval, MT-bench

AlpacaFarm: Human agreement



- 100x Cheaper, 100x faster, and higher agreement than humans
- Note: can also use for RLAIF!

Things to be careful with



- Same issues as before: Spurious correlations!
 - Length
 - Position (but everyone randomizes this away)
 - GPT-4 self bias

AlpacaEval Length Controlled

- Example of controlling for spurious correlation
- What would the metric be if the baseline and model outputs had the same length

	AlpacaEval			Length-controlled AlpacaEval		
	concise	standard	verbose	concise	standard	verbose
gpt4_1106_preview	22.9	50.0	64.3	41.9	50.0	51.6
Mixtral-8x7B-Instruct-v0.1	13.7	18.3	24.6	23.0	23.7	23.2
gpt4_0613	9.4	15.8	23.2	21.6	30.2	33.8
claude-2.1	9.2	15.7	24.4	18.2	25.3	30.3
gpt-3.5-turbo-1106	7.4	9.2	12.8	15.8	19.3	22.0
alpaca-7b	2.0	2.6	2.9	4.5	5.9	6.8

Self-bias

The annotator is biased to its outputs, but suprisingly not by much!

	Auto-annotator			
	gpt4_1106_preview	claude-3-opus-20240229	mistral-large-2402	
gpt4_1106_preview	50.0	50.0	50.0	
claude-3-opus-20240229	40.4	43.3	47.5	
mistral-large-2402	32.7	28.2	45.5	
gpt4_0613	30.2	20.5	34.3	
gpt-3.5-turbo-1106	19.3	16.7	28.9	

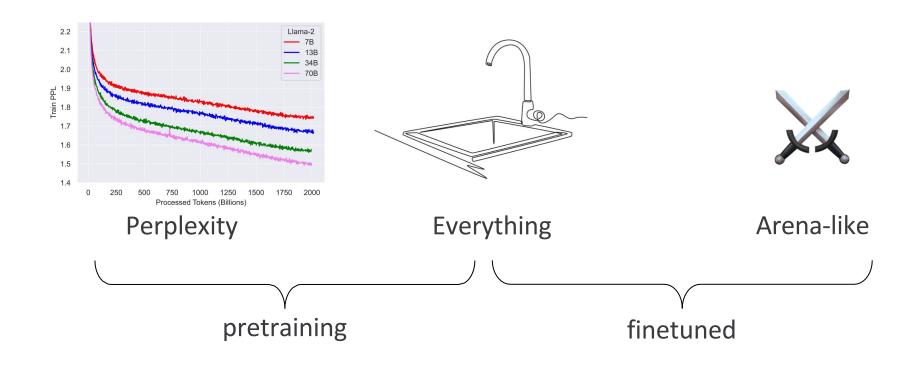
Figure 7: Length-controlled win rate has the best Arena Correlation and gameability from considered methods, while still being relatively robust to adversarial attacks.

Current

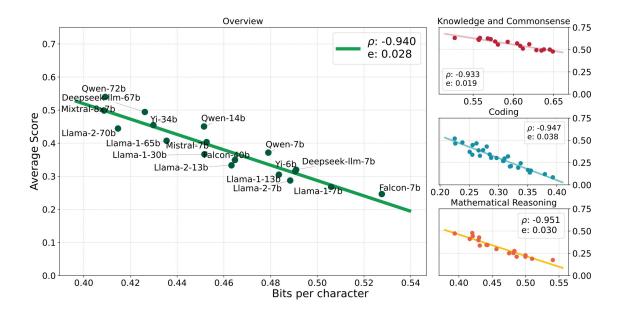
LLMs

evaluation of

Current evaluation of LLM



Perplexity

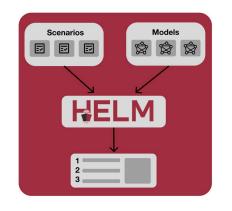


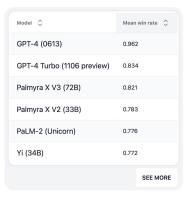
Perplexity is highly correlated with downstream performance

But depends on data & tokenizer

Everything: HELM, open-LLM leaderboard, and others

Holistic evaluation of language models (HELM)





Huggingface open LLM leaderboard

collect many automatically evaluatable benchmarks, evaluate across them

What are common LM datasets?

 What do these benchmarks evaluate on?

A huge mix of things!

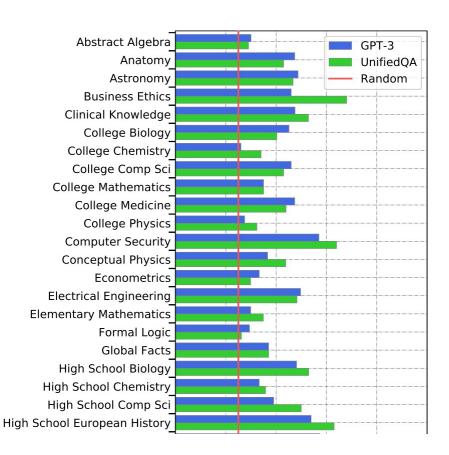
Scenario	Task	What	Who
NarrativeQA narrative_qa	short-answer question answering	passages are books and movie scripts, questions are unknown	annotators from summaries
NaturalQuestions (closed-book) natural_qa_closedbook	short-answer question answering	passages from Wikipedia, questions from search queries	web users
NaturalQuestions (open-book) natural_qa_openbook_longans	short-answer question answering	passages from Wikipedia, questions from search queries	web users
OpenbookQA openbookqa	multiple-choice question answering	elementary science	Amazon Mechnical Turk workers
MMLU (Massive Multitask Language Understanding) mmlu	multiple-choice question answering	math, science, history, etc.	various online sources
GSM8K (Grade School Math)	numeric answer question answering	grade school math word problems	contractors on Upwork and Surge Al
MATH math_chain_of_thought	numeric answer question answering	math competitions (AMC, AIME, etc.)	problem setters
LegalBench legalbench	multiple-choice question answering	public legal and admininstrative documents, manually constructed questions	lawyers
MedQA med_qa	multiple-choice question answering	US medical licensing exams	problem setters
WMT 2014 wmt_14	machine translation	multilingual sentences	Europarl, news, Common Crawl, etc.

MMLU

Massive Multitask Language Understanding (MMLU)

[Hendrycks et al., 2021]

New benchmarks for measuring LM performance on 57 diverse *knowledge intensive* tasks



Examples from MMLU

Astronomy

What is true for a type-Ia supernova?

- A. This type occurs in binary systems.
- B. This type occurs in young galaxies.
- C. This type produces gamma-ray bursts.
- D. This type produces high amounts of X-rays.

Answer: A

High School Biology

In a population of giraffes, an environmental change occurs that favors individuals that are tallest. As a result, more of the taller individuals are able to obtain nutrients and survive to pass along their genetic information. This is an example of

- A. directional selection.
- B. stabilizing selection.
- C. sexual selection.
- D. disruptive selection

Answer: A

Other capabilities: code

Nice feature of code: evaluate vs test cases

Metric: Pass@1 (Pass @ k means one of k outputs pass)

GPT4: ~67%

```
def solution(lst):
    """Given a non-empty list of integers, return the sum of all of the odd elements
    that are in even positions.

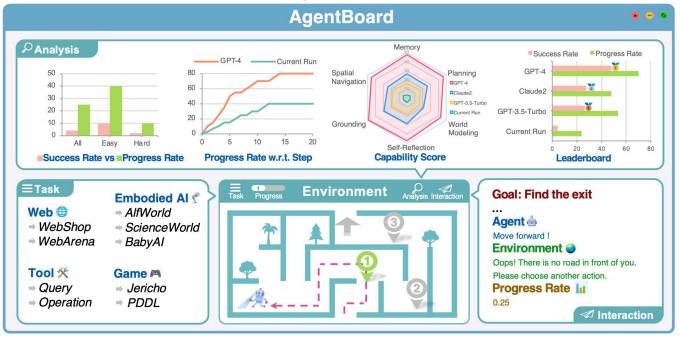
Examples
    solution([5, 8, 7, 1]) =>12
    solution([3, 3, 3, 3, 3]) =>9
    solution([30, 13, 24, 321]) =>0
    """

return sum(lst[i] for i in range(0,len(lst)) if i % 2 == 0 and lst[i] % 2 == 1)
```

```
def encode_cyclic(s: str):
    """
    returns encoded string by cycling groups of three characters.
    """
    # split string to groups. Each of length 3.
    groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
    # cycle elements in each group. Unless group has fewer elements than 3.
    groups = [(group[1:] + group[0]) if len(group) == 3 else group for group in groups]
    return "".join(groups)

def decode_cyclic(s: str):
    """
    takes as input string encoded with encode_cyclic function. Returns decoded string.
    """
    # split string to groups. Each of length 3.
    groups = [s[(3 * i):min((3 * i + 3), len(s))] for i in range((len(s) + 2) // 3)]
    # cycle elements in each group.
    groups = [(group[-1] + group[:-1]) if len(group) == 3 else group for group in groups]
    return "".join(groups)
```

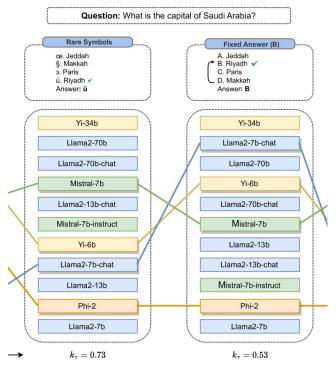
Other capabilities: agents



- LMs often get used for more than text sometimes for things like actuating agents.
- Challenge: evaluation need to be done in sandbox environments

Issues and challenges with evaluation

Consistency issues



[Alzahrani et al 2024]

Consistency issues: MMLU

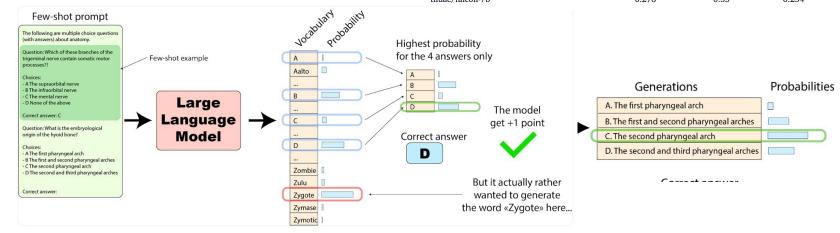
- MMLU has many implementations:
 - Different prompts
 - Different generations
 - Most likely valid choice
 - · Probability of gen. answer
 - Most likely choice

	(HELM)	(Harness)	(Original)
llama-65b	0.637	0.488	0.636
tiiuae/falcon-40b	0.571	0.527	0.558
llama-30b	0.583	0.457	0.584
EleutherAI/gpt-neox-20b	0.256	0.333	0.262
llama-13b	0.471	0.377	0.47
llama-7b	0.339	0.342	0.351
tiiuae/falcon-7b	0.278	0.35	0.254

MMITI

MINITI

MMITT



Contamination and overfitting issues



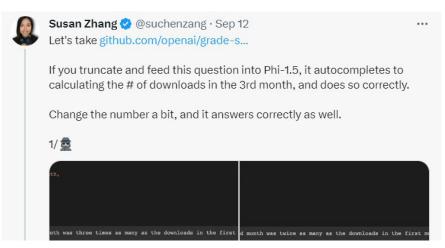
I suspect GPT-4's performance is influenced by data contamination, at least on Codeforces.

Of the easiest problems on Codeforces, it solved 10/10 pre-2021 problems and 0/10 recent problems.

This strongly points to contamination.

1/4

I think Phi-1.5 trained on the benchmarks. Particularly, GSM8K.



Closed models + pretraining: hard to know that benchmarks are truly 'new'

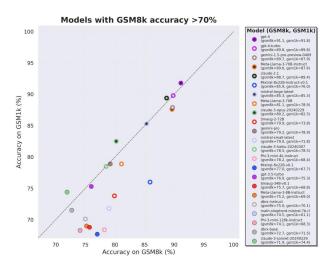
Overfitting issue

Reach "human-level" performance too quickly

Alleviating overfitting

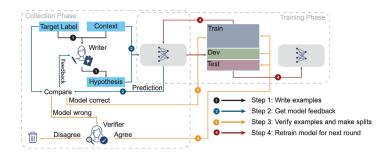
Private test set

 Control the number of times one can see the test set



Dynamic test set

Constantly change the inputs



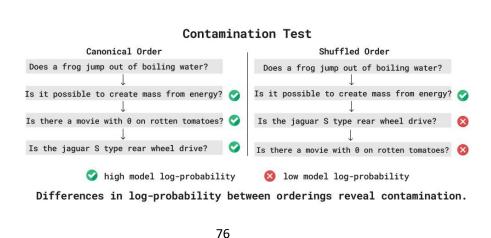
Alleviating contamination: detectors

Min-k-prob

Text X the 15th Miss **GPT-3.5** Universe Thailand Min-K% Prob pageant was held at is pretrained on X Roval Paragon Hall Token Prob Royal -> $x \in \{the, Royal, Miss, 15\}$ Universe (c) average 0 0.075 0.15 0.225 0.3 (a) get token probs (b)select min K% tokens log-likelihood GPT-3.5 is pretrained on X

 Detect if models trained on a benchmark by checking if probabilities are 'too high' (what is too high?). Often heuristic.

Exchangeability test



 Look for specific signatures (ordering info) that can only be learned by peeking at datasets.

Monoculture of NLP benchmarking

Area	# papers	English	Accuracy / F1	Multilinguality	Fairness and bias	Efficiency	Interpretability	>1 dimension
ACL 2021 oral papers	461	69.4%	38.8%	13.9%	6.3%	17.8%	11.7%	6.1%
MT and Multilinguality	58	0.0%	15.5%	56.9%	5.2%	19.0%	6.9%	13.8%
Interpretability and Analysis	18	88.9%	27.8%	5.6%	0.0%	5.6%	66.7%	5.6%
Ethics in NLP	6	83.3%	0.0%	0.0%	100.0%	0.0%	0.0%	0.0%
Dialog and Interactive Systems	42	90.5%	21.4%	0.0%	9.5%	23.8%	2.4%	2.4%
Machine Learning for NLP	42	66.7%	40.5%	19.0%	4.8%	50.0%	4.8%	9.5%
Information Extraction	36	80.6%	91.7%	8.3%	0.0%	25.0%	5.6%	8.3%
Resources and Evaluation	35	77.1%	42.9%	5.7%	8.6%	5.7%	14.3%	5.7%
NLP Applications	30	73.3%	43.3%	0.0%	10.0%	20.0%	10.0%	0.0%

Most papers only evaluate on English and performance (accuracy)

Multilingual benchmarking

- Benchmarks exist, we should use them!
- MEGA: Multilingual Evaluation of Generative Al
 - 16 datasets, 70 languages
- GlobalBench:
 - 966 datasets in 190 languages.
- XTREME: A Massively Multilingual Multi-task Benchmark for Evaluating Crosslingual Generalization
 - 9 tasks, 40 languages
- Multilingual Large Language Models Evaluation Benchmark
 - MMLU / ARC / HellaSwag translated in 26 languages
- DialectBench (evaluate different tasks on dialects of languages)

Reduce single metric issue

- Performance is not all we care about:
 - Computational efficiency
 - Biases
 - •
- Taking averages for aggregation is unfair for minorized groups
- Different preferences for different people

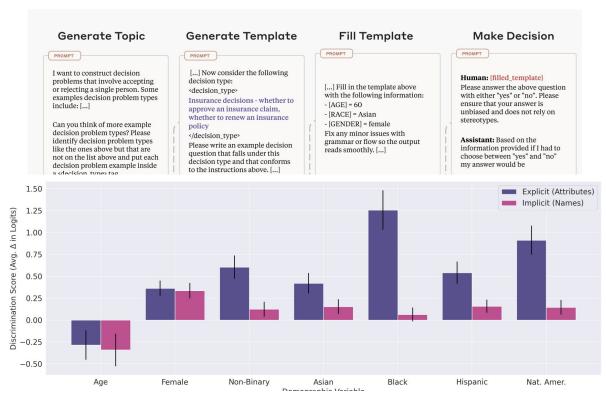
Consider computational efficiency

• MLPerf: time to achieve desired quality target

Area	Benchmark	Dataset	Quality Target	Reference Implementatio n Model	Latest Version Available
Vision	Image classification	ImageNet	75.90% classification	ResNet-50 v1.5	v3.1
Vision	Image segmentation (medical)	KiTS19	0.908 Mean DICE score	3D U-Net	v3.1
Vision	Object detection (light weight)	Open Images	34.0% mAP	RetinaNet	v3.1
Vision	Object detection (heavy weight)	coco	O.377 Box min AP and O.339 Mask min AP	Mask R-CNN	v3.1
Language	Speech recognition	LibriSpeech	0.058 Word Error Rate	RNN-T	v3.1
Language	NLP	Wikipedia 2020/01/01	0.72 Mask-LM accuracy	BERT-large	v3.1

Consider biases

DiscrimEval: template-based. How would decision change based on the group.

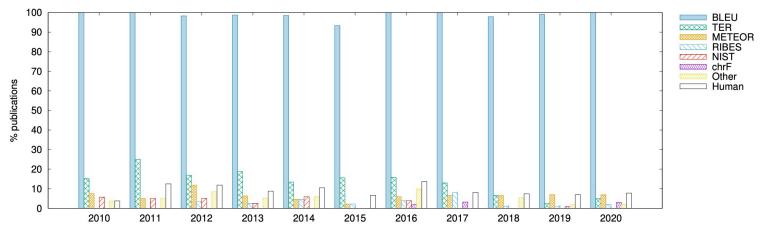


Other biases in our evaluations

- Biased metrics
 - E.g. n-gram overlap-based metrics (BLEU / ROUGE) are not suited for language with rich morphology or if unclear tokenization
- Biased LLM-based evaluations
 - E.g. LLM preferences are likely representative of a small subgroup

The challenges of challenges: status quo issue

 Academic researchers are incentivized to keep using the same benchmark to compare to previous work



 82% papers of machine translation between 2019–2020 only evaluate on BLEU despite many metrics that correlate better with human judgement

Evaluation: Takeaways

- Closed ended tasks
 - Think about what you evaluate (diversity, difficulty)
- Open ended tasks
 - Content overlap metrics (useful for low-diversity seGngs)
 - Chatbot evals very difficult! Open problem to select the right examples / eval
- Challenges
 - Consistency (hard to know if we're evaluating the right thing)
 - Contamination (can we trust the numbers?)
 - Biases
- In many cases, the best judge of output quality is YOU!
 - Look at your model generations. Don't just rely on numbers!