# Language Modeling II

CSE 5525: Foundations of Speech and Language Processing

https://shocheen.github.io/cse-5525-fall-2025/



#### The Ohio State University

Sachin Kumar (kumar.1145@osu.edu)

Slide Credits: Chris Tanner

#### Logistics

- How was Hw1?
  - Any thoughts, questions, concerns?

- Homework 2 is released. Due in two weeks (Sept 25)
  - Topic: Language Modeling with Transformers

#### Recap from last class

- What are language models
  - Distributions over sequences of "tokens".
  - Tokens can be: words, character, something else (more about that soon)
- What are they useful for
  - Measure likelihood of given sequence, ranking different sequences, generating sequences, and more
- How do you measure if a given language model is good
  - Perplexity
- How do you train a language model
  - N-gram LMs

#### This Class and Beyond: Neural Language Models

- Feedforward Neural Language Model
- Recurrent Neural Network (RNN)
- RNN + Attention
- Attention is all you need
  - Transformer Architecture

## The cat sat on the mat

# P(mat | The cat sat on the)

next word

context or prefix

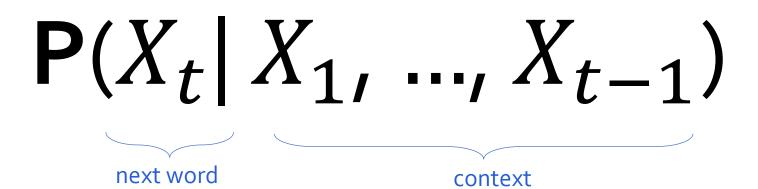
$$P(X_t|X_1,...,X_{t-1})$$
next word context



But more broadly,

$$P(X_1, ..., X_N)$$
  
=  $\prod_t P(X_t | X_1, ..., X_{t-1})$ 

Chain rule



But more broadly,

$$P(X_1, ..., X_N)$$

A variant

$$P(X_1, ..., X_N \mid Y_1, ..., Y_M)$$

#### Language Models: N-grams

- Probabilistic n-gram models of text generation
  - LMs so far: count-based estimates of probabilities
- Counts are brittle and generalize poorly, so we added smoothing
- The quantity that we are focused on estimating (e.g., for trigram model):

$$\prod_{i} P(X_i|X_{i-2},X_{i-1})$$

A Very Simple Approach

Instead of having count-based distributions, parameterize them

$$P(X_i|X_{i-2},X_{i-1},\theta)$$

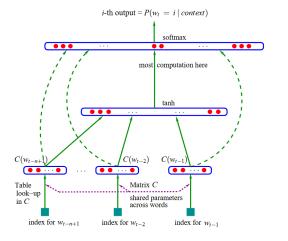
- How would we model this with a neural network?
  - Can we use a feedforward network?

A Very Simple Approach

- A simple MLP-ish model
  - $\mathbf{c} = [\phi(X_{i-1}); \phi(X_{i-2})] < -$  concatenate the two vectors
  - $l = W_2 \tanh(W_1 c + b_1) + b_2$  (two layers with tanh activation)
  - $P(X_i|X_{i-2},X_{i-1},\theta) = \text{softmax}(l)$  (number of classes = vocabulary size)

 $\phi$  is an embedding function, and  $\theta = (W_1, b_1, W_2, b_2, \phi)$ 

- The parameters are estimated by maximizing the log probability of the data
- During inference, you compute the neural network every time you need a value from the probability distribution



A Very Simple Approach

- A simple MLP-ish model
  - $\mathbf{x} = [\phi(X_{i-1}); \phi(X_{i-2})]$
  - $y = W_2 \tanh(W_1 x + b_1) + b_2$  (two layers with tanh activation)
  - $P(X_i|X_{i-2},X_{i-1},\theta) = \text{softmax}(y)$  (number of classes = vocabulary size)
- $\phi$  is an embedding function, and  $\theta = (W_1, b_1, W_2, b_2, \phi)$
- What is the advantage over n-gram models?
  - Think smoothing

#### A Very Simple Approach

- A simple MLP-ish model
  - $\mathbf{x} = [\phi(X_{i-1}); \phi(X_{i-2})]$
  - $y = W_2 \tanh(W_1 x + b_1) + b_2$  (two layers with tanh activation)
  - $P(X_i|X_{i-2},X_{i-1},\theta) = \operatorname{softmax}(y)$  (number of classes = vocabulary size)

 $\phi$  is an embedding function, and  $\theta = (W_1, b_1, W_2, b_2, \phi)$ 

- What is the advantage over n-gram models?
  - Think smoothing
  - $softmax(y)_i = \frac{\exp(y_i)}{\sum_k \exp(y_k)}$
  - Why does softmax help with smoothing?
  - What are the costs?

## Feedforward Neural Language Models

- The MLP approach can help with smoothing at some costs
- But essentially makes the same modeling choices
  - Assuming a finite horizon the Markov assumption
  - We adopted this assumption because of sparsity (i.e., smoothing) challenges
- Can neural networks allow us to revisit these assumptions?

Revisiting the Markov Assumption

- The Markov assumption was critical for generalization
- But: it's terrible for natural language!
  - "I ate a **strawberry** with some **cream**"
  - "I ate a strawberry that was picked in the field by the best farmer in the world with some cream"
- It gets even worse beyond the single sentence

#### An MLP with No Markov Assumption

We need to model the parameterized distribution

• 
$$P(X_i|X_1, ... X_{i-2}, X_{i-1}, \theta)$$

- Why not just treat the context as a bag of words → Deep Averaging Network
  - Then it doesn't matter how long it is
- Why is this a terrible idea?
  - Order matters a lot in language
  - But it worked so well for text categorization ...
  - What may work for tasks that just require focusing on salient words (e.g., topic categorization), is not sufficient for language models (i.e., <u>next</u>-word prediction)

#### Bag of Words

- BOW can handle arbitrary length
- But losses any notion of order
- Furthermore, dependencies are complex
  - Not following linear order
  - Importance follow complex patterns
    - "I ate a strawberry that was picked in the field by the best farmer in the world with some cream"
    - "I ate a strawberry that was picked in the field by the best farmer in the world with clippers"
  - The model needs to focus on different parts in the context to predict different words





laptop

book

#### LMs w/ Recurrent Neural Nets

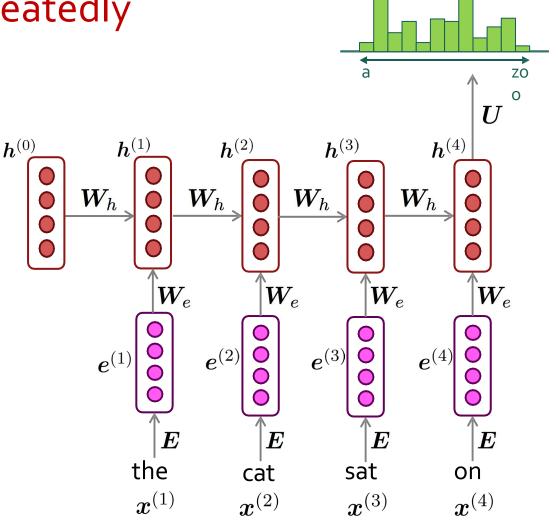
Core idea: apply a model repeatedly

outputs 
$$\left\{egin{array}{l} ext{output distribution} \ \hat{m{y}}^{(t)} = \operatorname{softmax}\left(m{U}m{h}^{(t)} + m{b}_2
ight) \in \mathbb{R}^{|V|} \end{array}
ight.$$

hidden states

$$m{h}^{(t)} = \sigma \left(m{W}_hm{h}^{(t-1)} + m{W}_em{e}^{(t)} + m{b}_1
ight)$$
 $m{h}^{(0)}$  is the initial hidden state

word embeddings  $oldsymbol{e}^{(t)} = oldsymbol{E} oldsymbol{x}^{(t)}$ Input embedding words / one-hot vectors



#### Recurrent Neural Networks

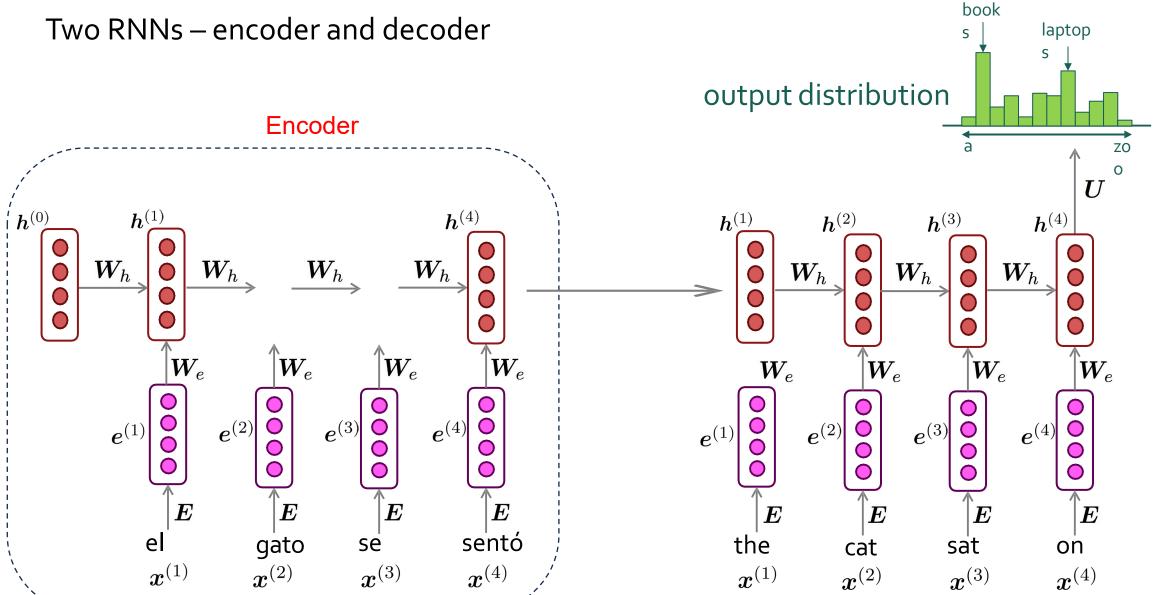
- Applied to sequential data iteratively.
  - $h_t = f(h_{t-1}, x_t; \theta)$
  - there are many ways to define f (we will only talk about simple RNNs)
  - Note this theta is shared across all the items in the sequence
- Why RNNs
  - They allow modeling infinite context (in theory)
  - They can retain sequential information as opposed to bag of words models
- Intuitively, at every hidden state, the model encodes all the necessary information required to predict the next token at that position
  - At least that's the hope

#### Recall: Conditional Language Models

• Useful for modeling tasks like machine translation, document summarization etc.

$$P(X_1, ..., X_N \mid Y_1, ..., Y_M)$$

#### Conditional LMs with RNNs



Decoder

#### How to train RNNs?

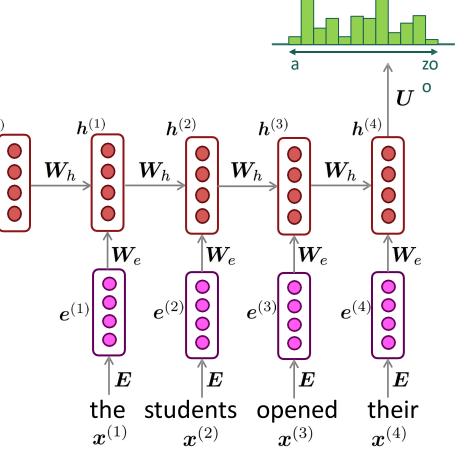
- Using our favorite algorithm: gradient descent using cross-entropy loss at every output step
- But backpropagation is applied over and over to the same parameters theta
  - Also known as backpropagation through time (BPTT)
- Issues with RNNs
  - Gradients can explode or vanish.
  - Solution: modify optimization algorithms / architectures (e.g. LSTMs) [won't discuss in this course, look at readings)

#### Other issues with RNNs

 Recurrent computation is slow, difficult to parallelize.

• Each hidden state is expected to store the entire information from the previous context

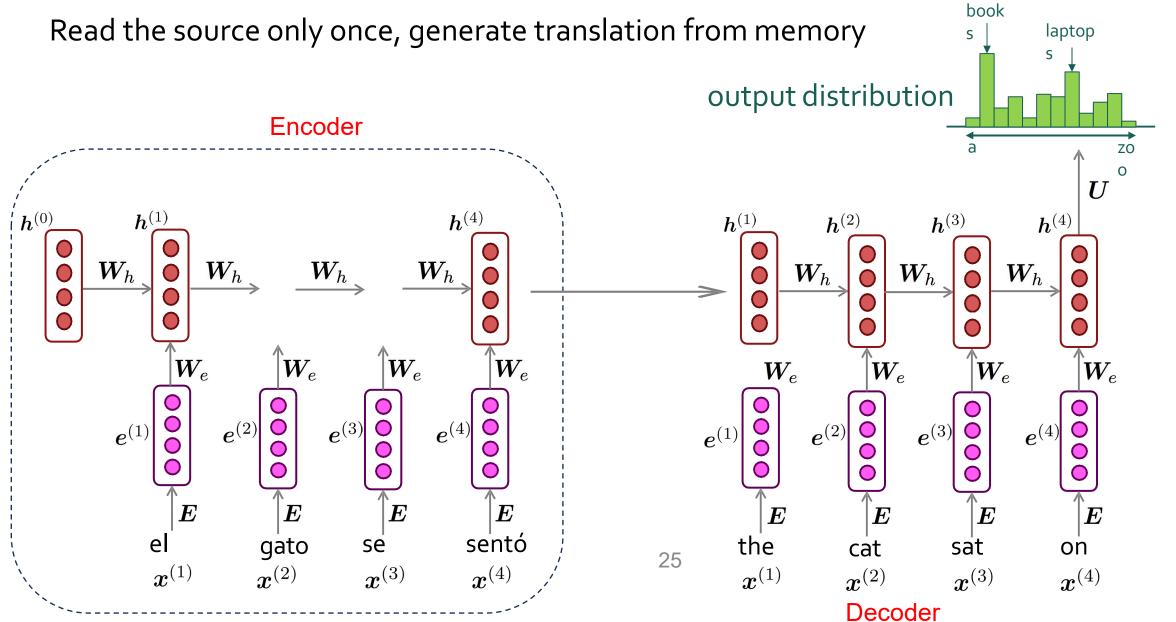
• Is it even possible?



books

lapto

#### Machine Translation with RNNs

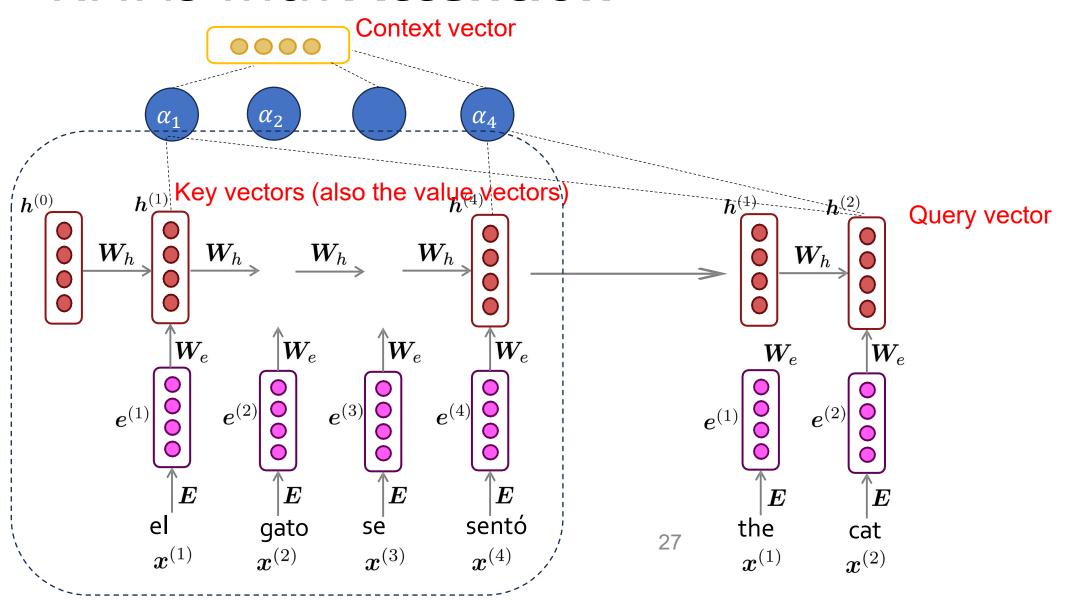


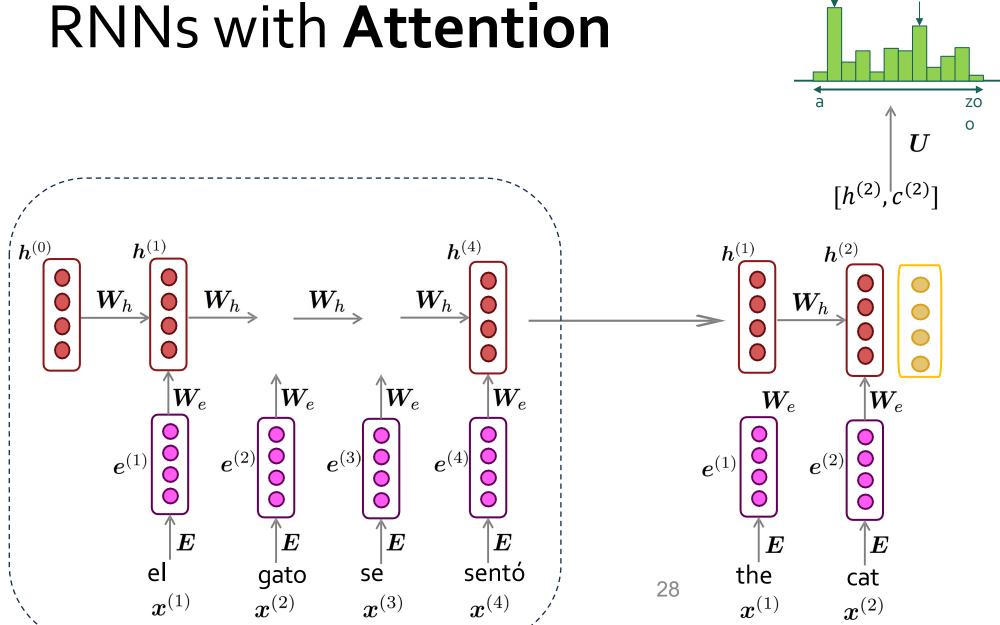
#### Solution: Attention

 What if the decoder at each step pays "attention" to a distribution of all of encoder's hidden states?

 Intuition: when we (humans) translate a sentence, we don't just consume the original sentence then regurgitate in a new language; we continuously look back at the original while focusing on different parts

#### RNNs with Attention





sat

lounged

#### RNNs with Attention

Attention allowed modelling longer context and obtain higher performance

- But
  - It is still slow because of linear computation in RNN
  - It still has gradient vanishing/exploding issues

- Solution: what if we removed the RNN component and only use attention
  - Attention is all you need (Vaswani et al 2017)

#### **Transformers**

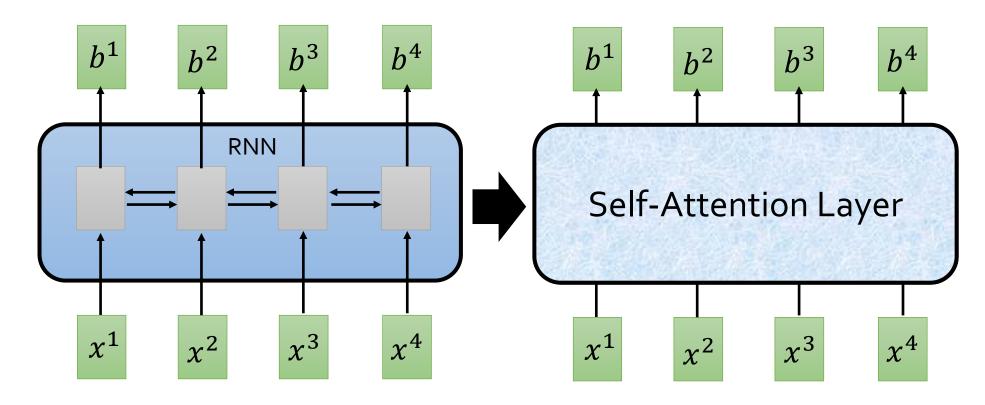
Replace the linear part with self-attention

 Introduce residual connections to improve gradient flow (avoid gradient exploding / vanishing issues)

Introduce positional embeddings to encode sequential order

#### Self-Attention

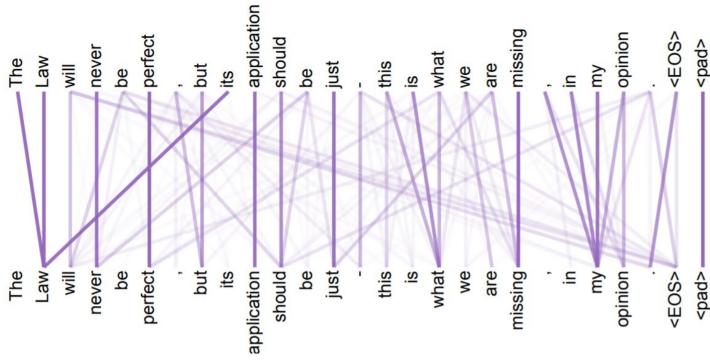
- $b^t$  is obtained based on the whole input sequence.
- can be parallelly computed.



Idea: replace any thing done by RNN with self-attention.

#### Attention

- Core idea: on each step, use direct connection to focus ("attend")
   on a particular part of the context
  - Kind of similar to deep averaging networks but a "weighted average"



#### Defining Self-Attention

- Terminology:
  - Query: to match others
  - Key: to be matched
  - Value: information to be extracted

• **Definition:** Given a set of vector **keys**, and a vector **query**, attention is a technique to compute a weighted sum of the **value**, dependent on the **query**.

# $q: ext{query (to match others)} \ q_t = W^q x_t$ $k: ext{key (to be matched)} \ k_t = W^k x_t$ $v: ext{value (information to be extracted)} \ v_t = W^v x_t$

 $q_1$   $k_1$   $v_1$ 

00000

 $x_1$ 

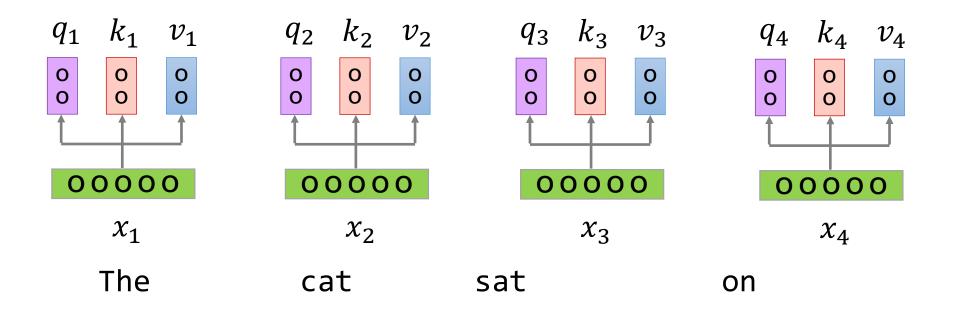
The

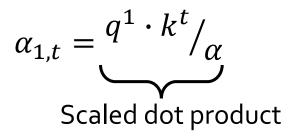
$$q$$
: query (to match others)  $q_t = W^q x_t$ 

$$k$$
: key (to be matched)
$$k_t = W^k x_t$$

v: value (information to be extracted)

$$v_t = W^v x_t$$



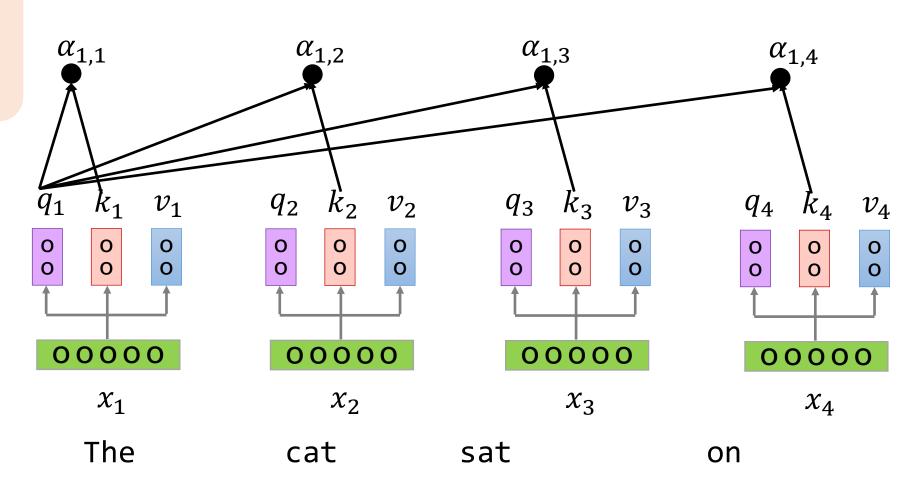


q: query (to match others)

k: key (to be matched)

v: value (information to be extracted)

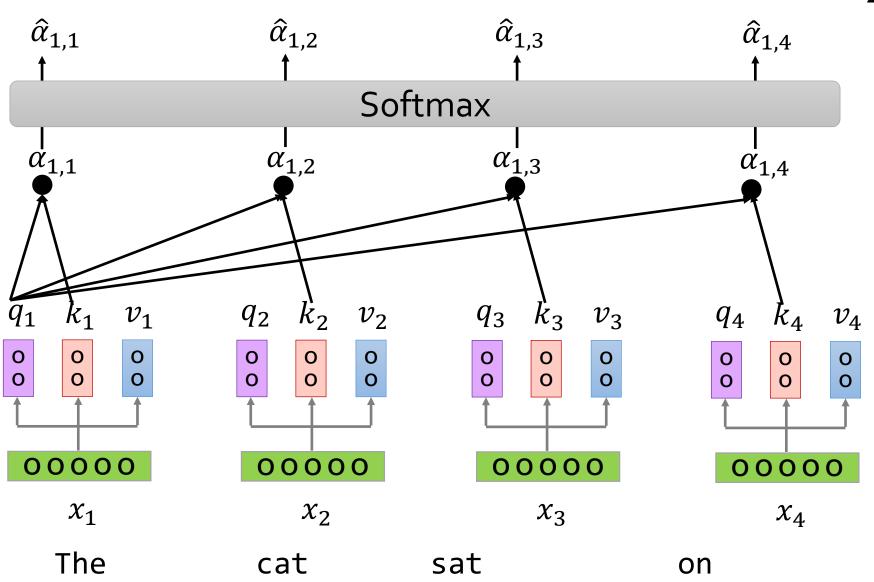
How much should "The" attend to other positions?

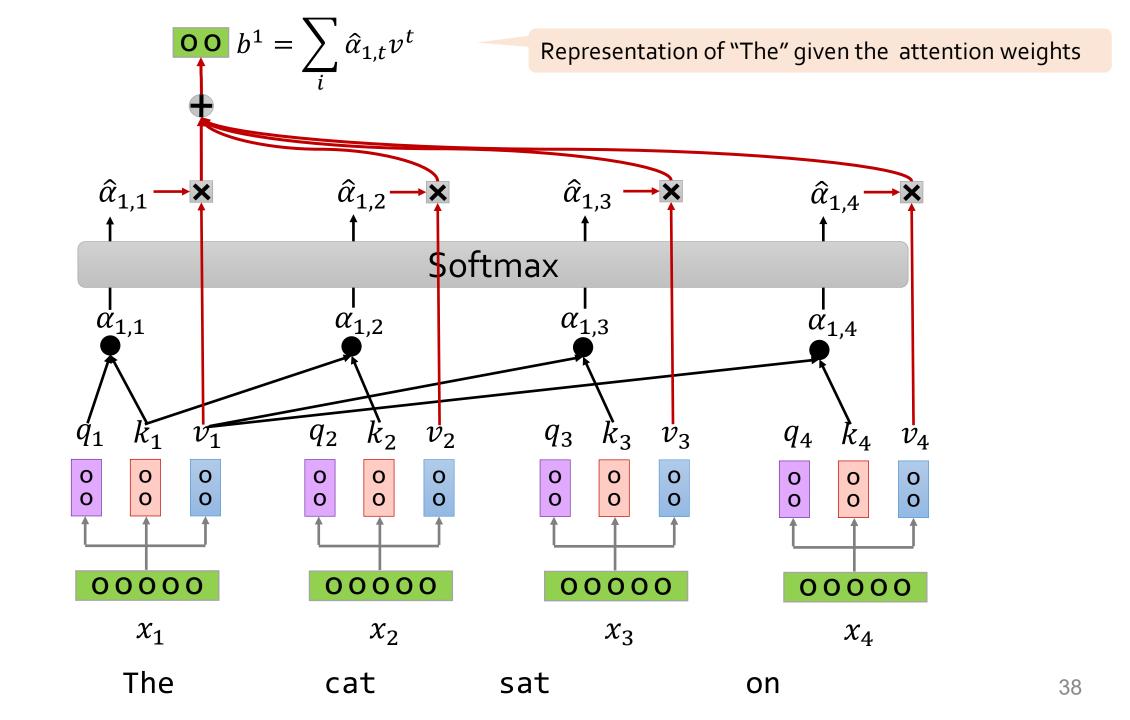


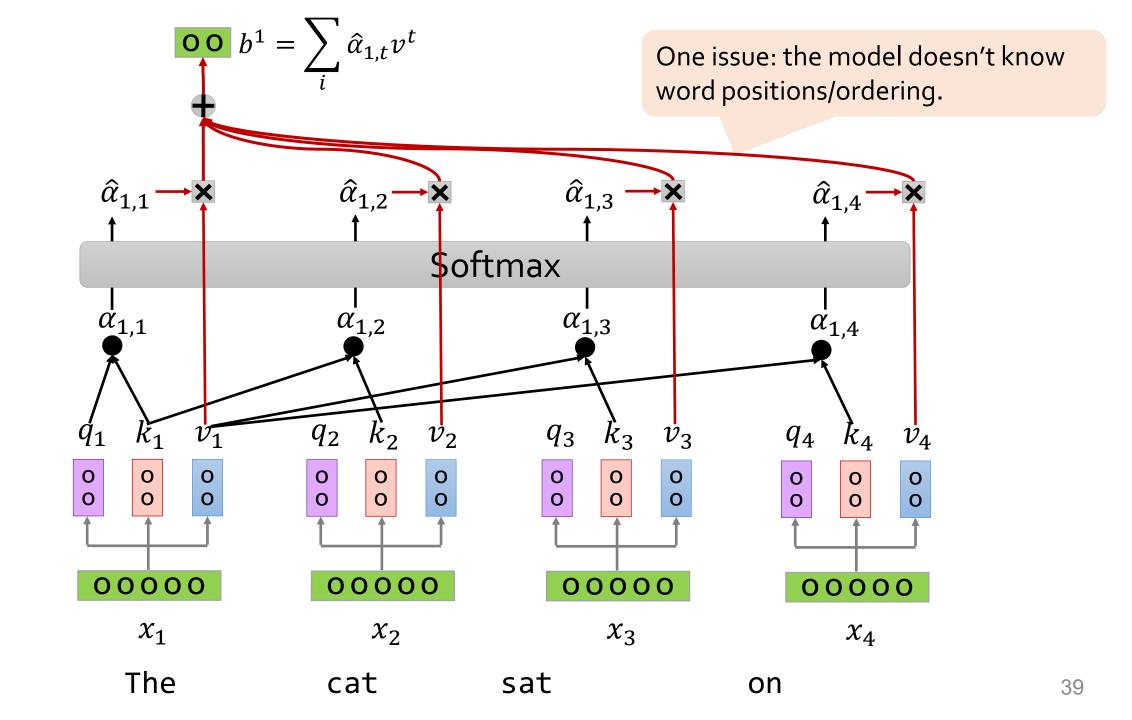
$$\sigma(z)_{t} = \frac{exp(z_{t})}{\sum_{j} exp(z_{j})}$$

$$\hat{\alpha}_{1,4}$$

How much should "The" attend to other positions?







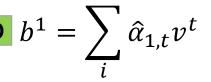
### How to encode position information?

- Self attention doesn't have a way to know whether an input token comes before or after another
  - Position is important in sequence modeling in NLP
- A way to introduce position information is add individual position encodings to the input for each position in the sequence

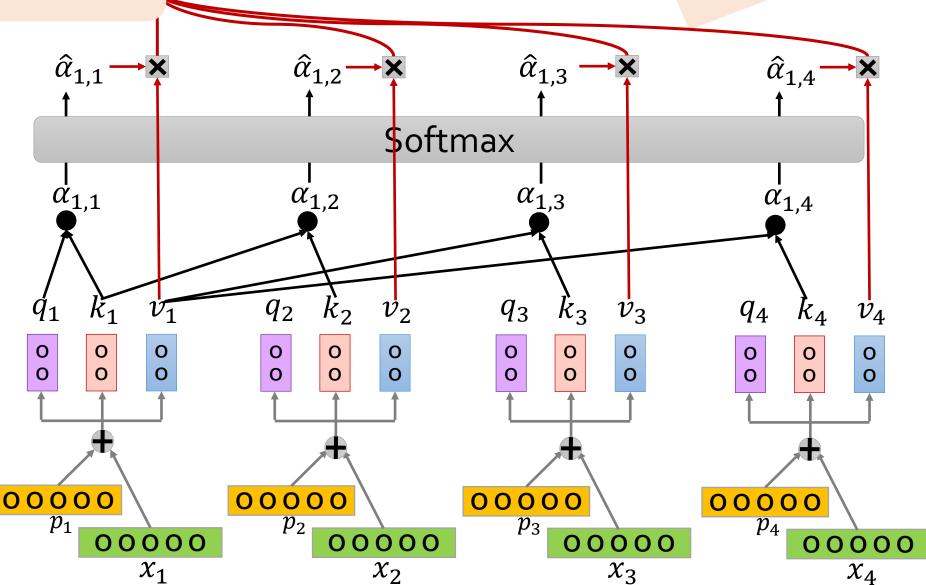
$$x_t = x_t + pos_t$$

Where post is a position vector

 $pos_i$  are unique vectors representing positional information



One issue: the model doesn't know word positions/ordering.



# Properties of a good positional embedding

- It should output a unique encoding for each time-step (word's position in a sentence)
- Distance between any two time-steps should be consistent across sentences with different lengths.
  - The cat sat on the mat
  - The happy cat sat on the mat
- Our model should generalize to longer sentences without any efforts. Its values should be bounded.

### Absolute position embeddings

- Define a maximum context length you model can encode: say 1000 tokens.
  - Create a separate embedding table for each position.
  - Each index 1, 2, 3, ... gets an embedding.
  - Learn the embeddings with the model.

- Issues with Learned positions embeddings:
  - Maximum length that can be presented is limited (what if I get a 2000 token input)
  - Difficult to encode relative positions
    - The cat sat on the mat
    - The happy cat sat on the mat

### Functional (and fixed) position embeddings

Sinusoidal embeddings

$$\overrightarrow{p_t}^{(i)} = f(t)^{(i)} := egin{cases} \sin(\omega_k.\,t), & ext{if } i = 2k \ \cos(\omega_k.\,t), & ext{if } i = 2k+1 \end{cases}$$

where

$$\omega_k = rac{1}{10000^{2k/d}}$$

The frequencies are decreasing along the vector dimension. It forms a geometric sequence on the wavelengths.

# Sinusoidal Embeddings: Intuition

```
0: 0 0 0 0 8: 1 0 0 0
1: 0 0 0 1 9: 1 0 0 1
2: 0 0 1 0 10: 1 0 1 0
3: 0 0 1 1
            11: 1 0 1 1
4: 0 1 0 0
            12: 1 1 0 0
5: 0 1 0 1
            13:
                1 1 0 1
            14: 1 1 1 0
6: 0 1 1 0
            15:
```

## Variants of Positional Embeddings

 Rotary Positional Embeddings (RoPE): [2104.09864] RoFormer: Enhanced Transformer with Rotary Position Embedding (arxiv.org)

 AliBi: [2108.12409] Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation (arxiv.org)

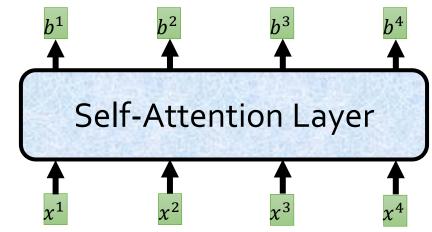
 No embeddings(!?): [2203.16634] Transformer Language Models without Positional Encodings Still Learn Positional Information (arxiv.org)

# Self-Attention: Back to Big Picture

- Attention is a way to focus on particular parts of the input
- Can write it in matrix form:

$$\boldsymbol{b} = \operatorname{softmax}\left(\frac{Q\boldsymbol{K}^{\mathrm{T}}}{\alpha}\right)\boldsymbol{V}$$

Efficient implementations



• Better at maintaining long-distance dependencies in the context.

### Self-Attention

$$\mathbf{b} = \operatorname{softmax}\left(\frac{QK^{\mathrm{T}}}{\alpha}\right)V$$



#### The most important formula in deep learning after 2018

#### **Self-Attention**

What is self-attention? Self-attention calculates a weighted average of feature representations with the weight proportional to a similarity score between pairs of representations. Formally, an input sequence of n tokens of dimensions d,  $X \in \mathbf{R}^{n \times d}$ , is projected using three matrices  $W_Q \in \mathbf{R}^{d \times d_q}$ ,  $W_K \in \mathbf{R}^{d \times d_k}$ , and  $W_V \in \mathbf{R}^{d \times d_v}$  to extract feature representations Q, K, and V, referred to as query, key, and value respectively with  $d_k = d_q$ . The outputs Q, K, V are computed as

$$Q = XW_Q, \quad K = XW_K, \quad V = XW_V.$$
 (1)

So, self-attention can be written as,

$$S = D(Q, K, V) = \operatorname{softmax}\left(\frac{QK^{T}}{\sqrt{d_q}}\right)V, \tag{2}$$

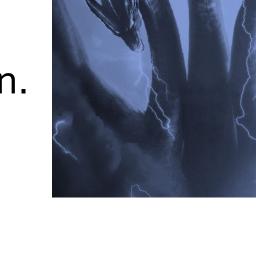
where softmax denotes a *row-wise* softmax normalization function. Thus, each element in S depends on all other elements in the same row.

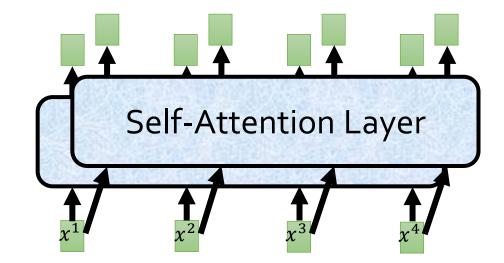
9:08 PM · Feb 9, 2021 · Twitter Web App

**553** Retweets **42** Quote Tweets **3,338** Likes

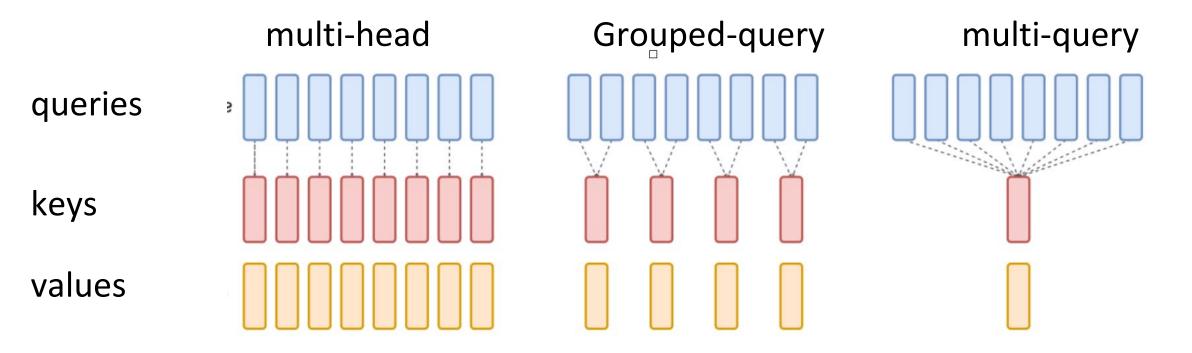
#### Multi-Headed Self-Attention

- Multiple parallel attention layers is quite common.
  - Each attention layer has its own parameters.





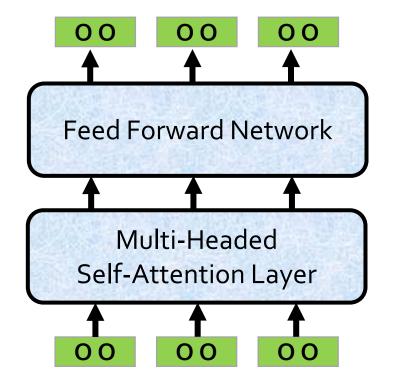
#### Variants of attention

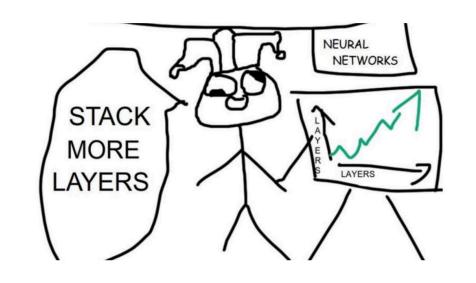


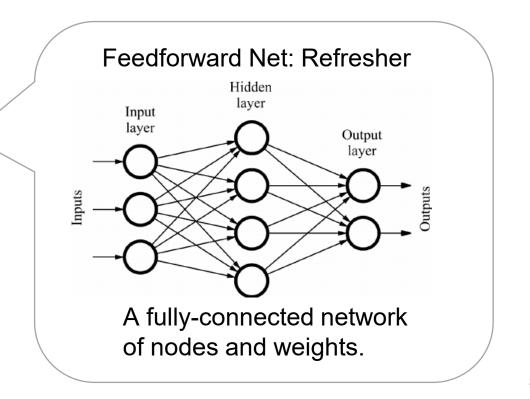
GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints (Ainslie et al., 2023)

### How Do We Make it Deep?

- Add a feed-forward network on top it to add more capacity/expressivity.
- Repeat!







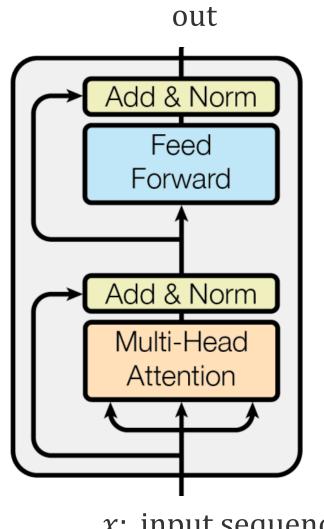
# Feed forward layer in a transformer

- A position-wise transformation consisting of:
  - A linear transformation, non-linear activation (e.g., ReLU), and another linear transformation.

$$FF(c) = f(cW_1 + b_1)W_2 + b_2$$

- This allows the model to apply another transformation to the contextual representations (or "post-process" them)
- Usually the dimensionality of the hidden feedforward layer is 2-8 times larger than the input dimension

#### A transformer block



*x*: input sequence

out = LayerNorm
$$(c' + FF(c'))$$
 (Residual connection)
$$FF(c') = f(c'W_1 + b_1)W_2 + b_2$$

$$c' = LayerNorm(c + x)$$

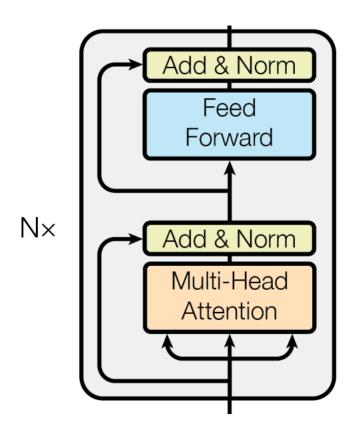
$$c = MultiHeadAttention(q, k, v)$$

$$q, k, v = QKV_Projection(x)$$

More details of LayerNorm and Residual Connection next week

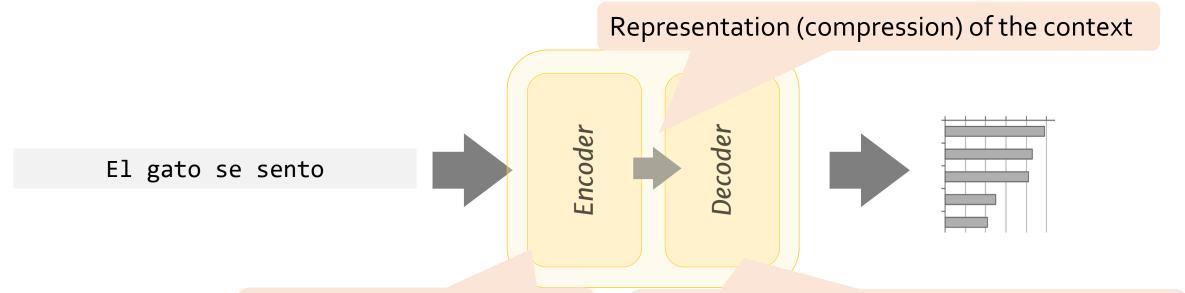
#### Transformer stack

A stack of N transformer blocks (organized in N layers)



#### Encoder-Decoder Architectures

Original transformer had two sub-models.



Processes the context and compiles it into a vector.

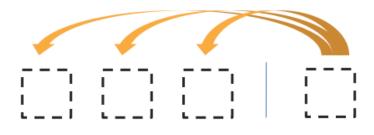
Produces the output sequence item by item using the representation of the context.

#### Encoder-Decoder Architectures



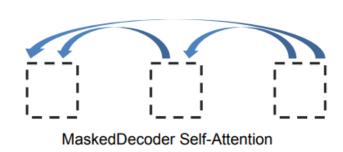
### Transformer [Vaswani et al. 2017]

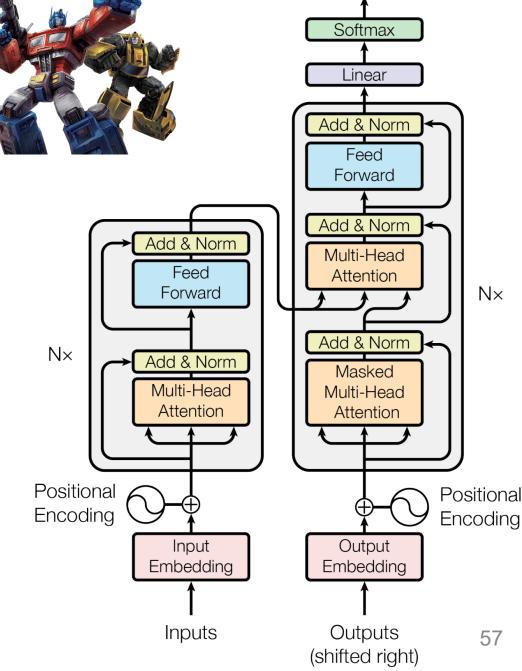
- An encoder-decoder architecture built with attention modules.
- 3 forms of attention



**Encoder-Decoder Attention** 







Output Probabilities

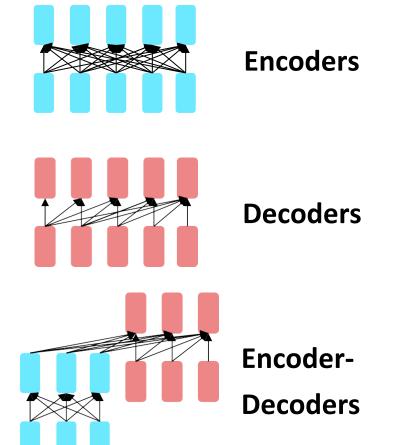
# Impact of Transformers

Let to better predictive models of language ala GPTs!

| Model                       | Layers | Heads | Perplexity |
|-----------------------------|--------|-------|------------|
| LSTMs (Grave et al., 2016)  | -      | -     | 40.8       |
| QRNNs (Merity et al., 2018) | -      | -     | 33.0       |
| Transformer                 | l 16   | 16    | l 19.8     |

## Impact of Transformers

A building block for a variety of LMs



- Examples: BERT, RoBERTa, SciBERT.
- Captures bidirectional context. How do we pretrain them?

- Examples: GPT-2, GPT-3, Llama models, and many many more
- Other name: causal or auto-regressive language model
- Nice to generate from; can't condition on future words
- Examples: Transformer, T<sub>5</sub>, BART
- What's the best way to pretrain them?

#### Transformer LMs + Scale = LLMs

- 2 main dimensions:
- Model size, pretraining data size

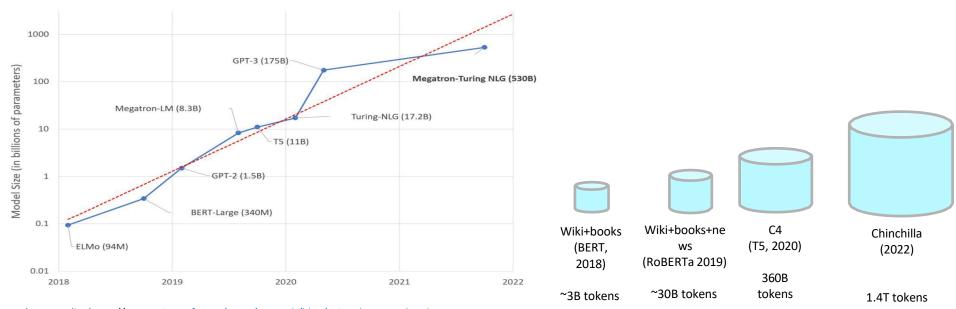
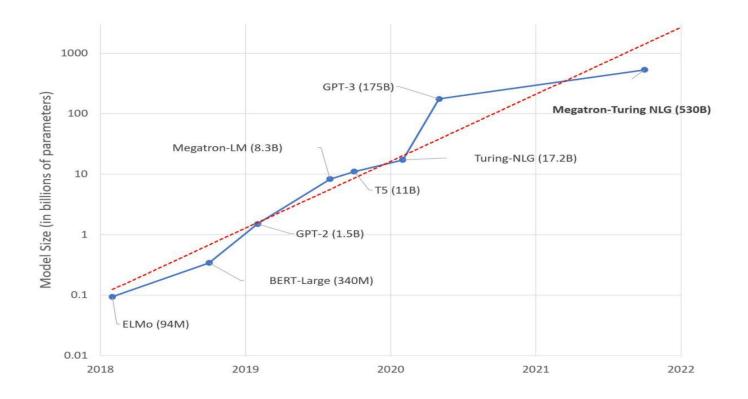


Photo credit: https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

# Large Language Models

 Not only they improved performance on many NLP tasks, but exhibited new capabilities



### Transformers - Summary

Self-attention + positional embedding + others = NLP go brr

Much faster to train than any previous architectures, much easier to scale

- Perform on par or better than previous RNN based models
  - Ease of scaling allows to extract much better performance