Natural Language to SQL
CSE 5525: Assignment 3

Goals

This assignment focuses on supervised sequence prediction, specifically the task of translating
natural language instructions into SQL queries. You will explore three different approaches for this
task: fine-tuning a pre-trained encoder-decoder transformer model (specifically, the T5 model),
training a model with the same architecture from scratch and using diverse prompt engineering
techniques with a large language model (LLM). As the same instruction can be expressed in different
ways in SQL, you will evaluate each system by comparing whether the generated SQL queries return
the same database records as the ground-truth by using the F1 metric. During the assignment, you
will evaluate these approaches, perform qualitative error analysis and report results.

The report for this assignment is structured. Please fill in content only in the appro-
priate places.

Dataset and Code

All data for the assignment can be found under the data/ directory. The database you will be
evaluating queries on is flight _database.db, with the flight database.schema file containing
the database schema. The ents (entities) section in the schema lists the 25 tables in the database,
such as “airline”, “restriction”, “flight”, etc. The schema also gives information about the columns
in the table, such their type and whether they’re indexed.

The text-to-SQL data, on the other hand, is split into training, development and held-out test sets.
The files with the .nl extension contain the natural language instructions, while the files with the
.sql extension contain the corresponding, ground-truth SQL queries. The starter code contains
various utility functions for evaluation (under utils.py) to abstract away the details of interacting
with the SQL database.

A skeleton of training code for T5 is provided in train t5.py and a skeleton of prompting code
for Gemma is provided in prompting.py.

Part 1 & 2: Working with the T5 Architecture

In Parts 1 & 2, you will be working with the small variant of the T5 encoder-decoder architecture
(Raffel et al., 2019)ﬂ The encoder will ingest natural language queries (i.e., the input sequence)
while the decoder will predict the corresponding SQL queries (i.e., the output sequence). Your first
task will be to finetune the pretrained T5 architecture while your second task will be to train the
exact same architecture from scratch (i.e., from randomly initialized weights). We provide you a
training loop code skeleton where you will only need to implement model initialization (using the
relevant Huggingface transformers implementationﬂ), the evaluation loop and data processing.

"https://arxiv.org/pdf/1910.10683
*https://huggingface.co/google-t5/t5-small


https://arxiv.org/pdf/1910.10683
https://huggingface.co/google-t5/t5-small

Natural Language to SQL

For either task, simply implementing data processing with the existing T5H tokenizer and varying
simple hyperparameters should lead to good baseline results. You may, however, choose to experi-
ment with data processing or architecture details to push performance higher. During finetuning,
for instance, a common design choice is to freeze part of the model parameters (i.e., only finetune a
subset of the parameters). Likewise, for training from scratch, you could find experimenting with
data processing leading to better outcomes. If you find that the tokenizer is ill-suited for SQL code,
for instance, you could choose to design your own tokenizer for SQL and learn new embeddings
and language modeling output heads for the decoderE]

In the assignment report, we ask you about your strategies for data processing, tokenization and
architecture details (such as freezing parameters). If you experiment with these dimensions and
find them to improve performance, we will expect ablation experiments supporting your findings
in the results section.

Part 3: Prompting & In-context Learning

For this task, you will experiment with in-context learning (ICL) using an LLM. You can use
two LLMs: instruction-tuned Gemma 1.1 2B model and/or instruction-tuned CodeGemma 7B
modelE] To get access to the models, you will need to log into your Hugging Face account, review
the conditions on the model’s page® and access the model’s content. The 7B model is slower for
inference and development, so you may want to do most development with the 2B model, and use
7B only in later stages. However, there is no requirement to use both models, and you could do all
development and report your final results on the 2B model. You can trade-off inference time with
performance by quantizing the model.

The LLM is frozen here, and will perform the generation task while only conditioned on the text
input (prompt). You will design prompts to experiment with zero- and few-shot prompting. In the
zero-shot case, you can provide instructions in the prompt, but it doesn’t include examples that
show the intended behaviour. In the few-shot case, you will also include examples showing the
intented behaviour. You need to at least try k = 0, 1,3, where k is the number of examples. You
are encouraged to try other values. For few-shot prompting, you will also need to experiment with
different ways of selecting the examples, observe how the design choice affects the performance, and
how sensitive performance is to the selection of ICL examples. In the prompt, you can also provide
additional context and indications, for instance, about the task, the database, or details about
the intended behavior. Optionally, you may also experiment with chain—of—thoughtﬂ prompting to
increase performance, but you are not required to.

In the assignment report, you should provide the best prompt you designed, and ablation exper-
iments that show how the design choices about different parts of the best prompt influenced the
performance. The ablation experiments should empirically show the effectiveness of your choices,
at a meaningful granularity level. For instance, did specific instruction(s), contextual information,
or clause order influence your performance? Note: these are for example purposes, and you should
include the ablations that are significant for your own prompt.

If you are interested, we recommend experimenting with your prompts with state-of-the-art LLMs

3These are ideas to get you thinking, rather than specific suggestions to try. We did not fully experiment with
these approaches.

“https://huggingface.co/google/gemma-1.1-2b-it| / https://huggingface.co/google/codegemma-7b-1it

5Chain-of-Thought Prompting Elicits Reasoning in Large Language Models (Wei et al., 2022)


https://huggingface.co/google/gemma-1.1-2b-it
https://huggingface.co/google/codegemma-7b-it
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf

Natural Language to SQL

(e.g., GPT-4, Claude, Gemini) to get an impression of the performance of the best models out
there. However, do not submit these results, or include them in the report. This is
just for your own intellectual curiosity and broader understanding.

Evaluation Details

For the task of language-to-SQL generation, since different SQL queries can correctly respond to
the same natural language instruction, evaluation is commonly performed by executing the SQL
queries directly on the database. The evaluation code in the starter repository will provide you
with three separate metrics: Record F1, Record Exact Match and SQL Query Exact Match (EM).

Record F1 is the metric that we will use to evaluate your submission and computes the F1 score
between database records produced by model-generated and ground-truth SQL queries. Record
EM, on the other hand, is a stricter metric checking whether the produced records match exactly,
similar to an accuracy score. Finally, SQL Query EM will tell you whether the SQL queries
themselves match exactly. As the latter two can help with debugging and error analysis, we will
ask you to also report them on the development set component of the results section.

Submission

You will upload your code to Gradescope for the assignment "HW3: Natural Language to SQL”.
Please create a .zip file of your submission which includes all the data, code, and a .pdf of the
report. Please include all the results and records generated from your experiments
in the respective directories. Also, when you are uploading your submission please
remember to exclude any saved models or checkpoint files. When you are zipping up your
files, make sure to select all the files and then zip, and not the folder containing the files.

To verify the correctness of your output format, you may use the evaluate.py script. For instance,
to evaluate submission files on the dev set, run:

python evaluate.py
--predicted_sql results/t5_ft_dev.sql
--predicted_records records/t5_ft_dev.pkl
—-—development_sql data/dev.sql
--development_records records/ground_truth_dev.pkl

Performance will be graded for all systems (llm, t5ft, t5scr), but with significantly more emphasis
on your best performing system.

Let Flpest = max(F 1y, Flise, F'lisser) be the F1 score of the best performing approach, and
Flgecond and F'lipiq be the F1 score of the two other approaches. The scoring curve function is:

f(z) =3x (o(z x 2.5) —0.5) ,
where ¢ is the sigmoid function. The performance points will be:
f(Flbest) x 35 + f(Flsecond) x 10 + Flthird X b

The performance points are indicative and your final score may be scaled relative to the points of
other students in the class.



