
Pretraining II
CSE 5525: Foundations of Speech and Natural Language 

Processing
https://shocheen.github.io/courses/cse-5525-spring-2025



Logistics
• Final Project Proposal: Due next Wednesday. Instructions are up 

on the website. 
• I will hold office hours this Monday (most likely zoom, I will announce 

beforehand if they will be in person). 

• Homework 3 will be released early Thursday (Feb 20) morning.
• Topic: finetuning  
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Last Class Recap: Subword Tokenization
• “Word”-level: issues with unknown words and information sharing, and gets complex fast

- Also, fits poorly to some languages

• Character-level: long sequences, the model needs to do a lot of heavy lifting in representing
that is encoded in plain-sight

• Subword tokenization – a middle ground

• Byte Pair Encoding or BPE

3



Last Class Recap: Masked LMs
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Image from https://www.holisticai.com/blog/from-transformer-architecture-to-prompt-engineering



• One or two sentences
- Word-piece token embeddings
- Position and segment embeddings

Inputs
BERT (and friends)
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[figure from Devlin et al. 2018]



Figure: Jay Alammar

Finetuning a MLM-pretrained model

https://jalammar.github.io/illustrated-transformer/


What can BERT do?

Devlin et al. (2019)

‣ Artificial [CLS] token is used as the vector to do classification from

‣ BERT can also do tagging by predicting tags at each word piece

‣ Sentence pair tasks (entailment): feed both sentences into BERT



What can BERT do?

‣ How does BERT model sentence pairs?

‣ Transformers can capture interactions between the two sentences, even though the NSP 
objective doesn’t really cause this to happen

Transformer

Transformer

…

[CLS] A boy plays in the snow [SEP] A boy is outside

Entails (first sentence implies second is true)



SQuAD
Q: What was Marie Curie the first female recipient of?

‣ Assume we know a passage that contains the answer. More recent work has 
shown how to retrieve these effectively (will discuss when we get to QA)

Answer = Nobel Prize



SQuAD
Q: What was Marie Curie the first female recipient of?

‣ Predict answer as a pair of (start, end) indices given question q and passage p; 
compute a score for each word and softmax those



QA with BERT

Devlin et al. (2019)

What was Marie Curie the first female recipient of ? [SEP] One of the most famous people born in Warsaw was Marie …



BERT results, BERT variants



Evaluation: GLUE

Wang et al. (2019)



Results

Devlin et al. (2018)

‣ Huge improvements over prior work

‣ Effective at “sentence pair” tasks: textual entailment (does sentence A imply sentence B), paraphrase 
detection



Significant improvements from pretraining
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Source: Devlin et al., 2018 (BERT)

https://arxiv.org/abs/1810.04805


What does BERT learn?

‣ Heads on transformers learn interesting and diverse things: content heads (attend based on content), positional heads (based on position), etc.

Clark et al. (2019)



What does BERT learn?

Clark et al. (2019)

‣ Still way worse than what supervised systems can do, but interesting that this is learned organically



Masked LMs
Encoder-only transformer
● Masked language modeling (MLM), next sentence prediction

⚘ These models are a good option if you want to solve a text 
classification problem for which you have thousands of labeled 
datapoints & you know how to train a model (which you all will 
know after this course) 

⚘ Are not built for generation. 
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Figure by: Lucas Beyer



Today
• How can we make BERT even better?

• We want pretraining benefits but also generative capabilities.



2017

Transformer

20192018

Pretraining;
Finetuning;

Contextualized 
Representations;

BERT;
GPT-2

2022

Instruction 
Finetuning;
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2023

RLHF;
ChatGPT;
LLaMA-2

20212020

Prompting;
In-context learning;

GPT-3

T5



Why not just causal language modeling?
• GPT-1 (Generative pretrained transformers) came before BERT 

and BERT argued that you need bidirectional context to learn 
good representations.
○ This belief was maintained even with GPT2 but BERT was generally 

better than GPT1 and 2 of many tasks.

○ Spoiler altert: we do use primarily causal LMs for pretraining 0.

• BERT achieved bidirectional context by learning using a 
“denoising objective”



Pretraining via denoising objectives
• What is denoising?

○ Add noise to your input, train a model to recover the original input from 
the noisy input

○ Goal: by learning to denoise, the model learns crucial details about the 
input.

• BERT uses masking a way to introduce noise.
○ Masked input a noisier version of original input.

• Lots of follow up works:
○ Can we built a generative model based on a denoising objective? T5
○ Can we use other denoising objectives?  BART
○ What if used both causal and denoising objectives together UL2



Today’s plan
• T5 (masked LM, encoder-decoder)

• BART (denoising LM, encoder-decoder)

• UL2 (decoder only – mix of denoising + causal LM objectives)

• If time: How to decode from decoders (sampling algorithms). 



• The model is composed of two components

• Bidirectional encoder to process the input

• Autoregressive decoder to generate output

• Training is usually done with loss on the output

- Propagates into the decoder and through it to the encoder

With Transformers
Encoder-decoder

[Vaswani et al. 2017]
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Loss



• Bidirectional encoder to process the input

• Autoregressive decoder to generate output

• Why does this structure make sense?

With Transformers
Encoder-decoder

[Vaswani et al. 2017]
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Loss



• Output is generated by decoder, and the loss is on the output

• Input is a sequence of tokens

How to adapt BERT to encoder-decoder

2
6 [Lewis et al. 2019]

https://arxiv.org/abs/1910.13461


• Pretraining is similar to the denoising objective of BERT: 
- Input: text with “masks” – but now spans removed (instead of just tokens)
- Output: sequence of phrases to fill the gaps

- Trained on the next token objective (only on the decoder; similar to a 
conditional LM)

Pretraining
T5 (Text-to-Text Transfer Transformer)

[Raffel et al. 2019]
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https://arxiv.org/abs/1910.10683


• BERT: a pre-trained encoder

• T5: pre-trained decoder and encoder

What Do We Get?
T5
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• [Lewis et al. 2019]

https://arxiv.org/abs/1910.13461


• Frame any problem as a text-to-text problem.

• Initialize with pretrained T5 and finetune every task as a text to 
text generation task (no new parameters required)

Finetuning
T5 (Text-to-Text Transfer Transformer)

[Raffel et al. 2019]
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https://arxiv.org/abs/1910.10683


• T5 was trained on one of the first very large corpora: 750GB of 
text, with pre-training using 235 tokens

• First to show the impact of data scale

• It can solve both text classification and generation tasks.

Results
T5 (Text-to-Text Transfer Transformer)

[Raffel et al. 2019]
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https://arxiv.org/abs/1910.10683


• Corrupt the input following five different recipes

• Try to recover the pre-corrupted input by generating it using the decoder

• Train on a lot of raw text data, just like with BERT and T5

Bidirectional and Autoregressive Transformer
A concurrent approach: BART
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[Lewis et al. 2019]

https://arxiv.org/abs/1910.13461


• Similar to BERT: fine-tune for the end task

• Add a classification head on just the encoder

• Or finetune like T5 on text-to-text tasks (no new parameters)
• Some other heuristics are applied to make this feasible – check paper for 

details – not important in the context of current language models.

How to Use? 
BART
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[Lewis et al. 2019]

https://arxiv.org/abs/1910.13461


• Can do anything that BERT does

• But can also do generation tasks (e.g., summarization)

Performance
BART
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• [Lewis et al. 2019]

https://arxiv.org/abs/1910.13461


• BART and T5 are very useful for all sorts of sequence-to-
sequence tasks with language

- T5 comes in different sizes
- There are various customization (e.g., CodeT5)

• Extended the generalizations conclusions from BERT, and 
demonstrated the impact of data scale

Takeaways
BART and T5

34



• So far, we have looked at multiple training objectives
• Denoising

• Masked token prediction –BERT
• Masked span prediction – T5
• Other denoising (shuffling, deleting, etc) – BART

• Next token prediction (GPT1, 2)

• Can we train a model that uses all of them?
• Can we use encoder-only architecture?
• Can we use encoder-decoder architecture?
• Can we use decoder only architecture?

UL2
Unified Language Modeling Paradigms



• Share the parameters of the encoder and 
the decoder

• Apply a bidirectional attention on the
input and causal (masked) attention on
the output.

Prefix LM
Do we really need a separate encoder?



• Can use encoder-decoder or decoder-only prefix-LMs
UL2
Unified Language Modeling Paradigms



• Denoising Objectives

• Next token prediction

• Combine them all. 

• Which won should we use?
• denoising objectives are great but pretty insufficient as a standalone objective -- less 

“loss exposure”, also a little contrived
• Causal LMs – high loss exposure, natural to formulate – also enables other interesting 

phenomenon like “few-shot learning” – with enough data and scale, Causal LMs turned 
out to be just as good without needing bidirectional context. 

Summary of different pretraining objectives

What happened to BERT & T5? On Transformer Encoders, PrefixLM and Denoising Objectives — Yi Tay

https://www.yitay.net/blog/model-architecture-blogpost-encoders-prefixlm-denoising


• We will (mostly) talk about decoder only LMs going forward as 
they are most commonly used now

• Like GPTs, Claude, Llama models, Mistral, Qwen, and many more.

Going forward – decoder only LMs



• Given a sequence 𝑥𝑥 compute the probability of the sequence
• 𝑝𝑝(𝑥𝑥) = ∏

𝑖𝑖=1

𝑁𝑁
𝑝𝑝(𝑥𝑥𝑖𝑖|𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1)

• Given a prefix, generate a sequence autoregressively(i.e., 
generating one token at a time)

• The prefix can be empty (sort of: always includes a start token)
• This prefix is called a prompt

What Can We Do with LMs?



Decoding strategies
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• Sampling:
𝑥𝑥𝑖𝑖 ∼ 𝑝𝑝(𝑥𝑥𝑖𝑖|𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1) until 𝑥𝑥𝑖𝑖 = STOP

This can often generate incoherent gibberish

Sampling 

Source: https://huggingface.co/blog/how-to-generate

https://huggingface.co/blog/how-to-generate


• Greedy (i.e., arg𝑚𝑚𝑚𝑚𝑚𝑚):
𝑥𝑥𝑖𝑖 = arg𝑚𝑚𝑚𝑚𝑚𝑚

𝑥𝑥1∈𝒱𝒱
𝑝𝑝(𝑥𝑥𝑖𝑖|𝑥𝑥1, … , 𝑥𝑥𝑖𝑖−1) until 𝑥𝑥𝑖𝑖 = STOP

• How many different strings can we generate this way? 

Greedy Decoding



• Let’s say we want something between sampling and greedy
• Not fully deterministic 
• But to control how focused on the top of the distribution with high 

likelihood

• Add a temperature parameter to the softmax
• Given z is the vector with logits, and 𝑇𝑇 ∈ ℝ in the temperature

Adjusting Distribution Temperature



• Add a temperature parameter to the softmax
• Given 𝑧𝑧 is the vector with logits, and 𝑇𝑇 ∈ ℝ in the temperature

Adjusting Distribution Temperature



• What happens with 𝑇𝑇 = 1? 𝑇𝑇 = 0 (or almost)? 𝑇𝑇 ∈ [0,1)? 𝑇𝑇 > 1?

Adjusting Distribution Temperature

Plots from Daphne Ippolito / Chenyan Xiong, CMU LLMs course http://cmu-llms.org/ 



Top-k sampling [Fan et al., 2018]

Filter k most likely next tokens and redistributed the probability mass among only those k tokens, 
then sample from the new distribution

Problem: It doesn’t dynamically adapt the number of words that are filtered from the next word 
probability distribution

Reasonable candidates (left fig)
are eliminated, and ill-fitted (right
fig) are not

47Source: https://huggingface.co/blog/how-to-generate

https://aclanthology.org/P18-1082/
https://huggingface.co/blog/how-to-generate


Top-p (nucleus) sampling[Holtzman et al., 2020] 

Sample from the smallest possible set of tokens whose cumulative probability exceeds the 
probability p

48Source: https://huggingface.co/blog/how-to-generate

https://arxiv.org/abs/1904.09751
https://huggingface.co/blog/how-to-generate


• Various decoding techniques: greedy, sampling, temperature-
based, top-k, nucleus

• Most common: temperature-based

• Which are guaranteed to give you the optimal output? Will 
arg𝑚𝑚𝑚𝑚𝑚𝑚 give you the optimal output?

Decoding



• Various decoding techniques: greedy, sampling, temperature-
based, top-k, nucleus

• Most common: temperature-based

• Which are guaranteed to give you the optimal output? Will 
arg𝑚𝑚𝑚𝑚𝑚𝑚 give you the optimal output?

Decoding

Output 1
0,2 0,5 0,1

0,01
I love Lucy

Output 2
0,2 0,1 0,99

0,0198
I hate Lucy
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Greedy decoding/search

Source: https://huggingface.co/blog/how-to-generate

https://huggingface.co/blog/how-to-generate


• Sampling techniques are not optimal

• Following a single hypothesis is just not sufficient, but enumerating all is intractable 

• Beam search is middle ground

• Follow a set of hypothesis, always keeping the top ones

• The size of the set 𝐵𝐵 is a hyperparameter

Beam Search

<S> (1.0)

I (0.5)

NLP (0.3)

NYC (0.1)

love (0.5)

lost (0.1)

is (0.7)

was (0.02)

was (0.01)

Lucy (0.8)

Ethel (0.05)

great (0.9)

sad (0.01)

</s> (0.8)

</s> (0.9)

0.25

0.21

0.2

0.189

0.5

0.3

0.16

0.1701



53Source: [Holtzman et al., 2020] 

https://arxiv.org/abs/1904.09751


• Sampling techniques are not optimal

• Following a single hypothesis is just not sufficient, but enumerating all is intractable 

• Beam search is middle ground

• Follow a set of hypothesis, always keeping the top ones

• The size of the set 𝐵𝐵 is a hyperparameter

• It’s an approximation method

• What happens with 𝐵𝐵 = 1? 𝐵𝐵 = ∞?

• What is the cost of beam search compared to the sampling techniques we saw?

• Can you combine sampling techniques with beam search?

Beam Search
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