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Training Cycle - LLM

Pre-Training

The training cycle for a LLM consists of 3 main stages:

Instruct Preference 
Tuning

5



Training Cycle - LLM

Pre-Training

Objective:
The goal of pre-training is to teach the model general
language understanding.

Process:
The model is trained on a massive dataset of text 
from the internet and other sources.

Outcome:
A base model that has a general understanding of the 
language.

6

This is what we’ve learned when
we talked about how GPT works



Training Cycle - LLM

Instruct

Objective:
The goal is to make the model useful for specific
tasks and improving its ability to follow instructions.

Process:
Fine-tuning the model on datasets that contain 
instructions and the desired outputs.

This also includes 
RLHF.

Outcome:
A model that becomes better at interpreting and 
following user instructions.
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Training Cycle - LLM

Objective:
The goal is to make sure that the model outputs are 
aligned to human preferences and are safe etc.

Process:
Involves further fine-tuning. We use RLHF to provide 
feedback on model outputs.

Outcome:
The model becomes more aligned with human intent 
and safer, reducing risk of biased content.

It’s after this step that we get
models like ChatGPT, Claude etc 8

Preference 
Tuning



Training Cycle - LLM

In this lecture, we will be focusing on the Instruct stage of 
fine-tuning.

Instruct

9

So, fine-tuning takes place in 2 stages.

Preference 
Tuning



Training Cycle - LLM
There are 2 types of 
fine-tuning that we 

can do.
Instruct

Domain Specific 
Finetuning

Task Specific 
Finetuning

Summarization Classification Sentiment 
Analysis

Medicine Finance Legal

10



Training Cycle - LLM

11

• A method of prompt 
engineering where the model is 
shown task demonstrations as 
part of the prompt.

• No change in model

Before we go deeper into fine-tuning there is another way of adapting LLMs for
specific task, which is called “In-context” learning.

• A process of training the LLM 
on a labelled dataset specific 
to a particular task.

• Change in model parameters.

In-context Learning Fine-tuning

parameters.

Fine-tuning is a supervised process that leads to a new model, in contrast 
with in-context learning, which is considered “ephemeral.”



Training Cycle - LLM

Before we go deeper into fine-tuning there is another way of adapting LLMs for
specific task, which is called “In-context” learning.

In-context Learning Fine-tuning

• A method of prompt • A process of training the LLM 

engineering where the model is  on a labelled dataset

shown task demonstrations as specific to a particular task.

part of the prompt.
• No change in model • Change in model 

parameters.  parameters.

Fine-tuning is a supervised process that leads to a new model, in contrast 
with in-context learning, which is considered “ephemeral.”

PROTOPAPAS 12

You may recall in-context 
learning from previous lecture 
with reference to prompting.

Let’s focus on fine-tuning and 
how it makes our LLM better.
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Instruction-tuning (Full Parameter)

15

Fine-tuning very often means instruction fine-tuning.

An instruction dataset, comprising pairs of instructions, answers, 
and sometimes context, is required for such fine-tuning.



Instruction-tuning (Full Parameter)

16

This is an example of what an instruction dataset looks like.

Instruction Context Output

Suggest a good restaurant Los Angeles, CA
In Los Angeles, CA, I suggest
Rossoblu Italian Restaurant

Rewrite the sentence with 
more descriptive words The game is fun

The game is exhilarating 
and enjoyable

Calculate the area of the 
triangle Base: 5cm; Height: 6cm The area of the triangle is

15 𝑐𝑐𝑚𝑚2

Source: Alpaca-GPT4 dataset

https://wandb.ai/capecape/alpaca_ft/reports/How-to-Fine-Tune-an-LLM-Part-1-Preparing-a-Dataset-for-Instruction-Tuning--Vmlldzo1NTcxNzE2


Instruction-tuning (Full Parameter)

17

Task-specific fine-tuning:
This particular process involves training the model on a smaller, 
task-specific dataset.

For e.g.: Summarize this, translate that, etc

This allows the model to learn the nuances, and specialized 
vocabulary relavant to the task.



Instruction-tuning (Full Parameter)

18

For e.g., if you train a model 
specifically for question answering:

Notice, how it answers requests,
starting with ‘Sure…’.



Instruction-tuning (Full Parameter)

For e.g., if you train a model 
specifically for question answering:

Notice, how it answers requests,
starting with ‘Sure…’.

This is opposed to how language models are trained (next word 
prediction), according to which the answer should just included the 
haiku directly.

19



Instruction-tuning (Full Parameter)
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We have to be careful while doing task-specific finetuning to avoid 
catastrophic forgetting.

Catastrophic forgetting refers to the phenomenon where a model 
loses its ability to perform previously learned tasks when it is being 
fine-tuned on new tasks.

The key idea of catastrophic forgetting is that as the model learns 
new tasks, it may overwrite what it previously learned, leading to a 
loss in performance on earlier tasks.



Instruction-tuning (Full Parameter)

21

To mitigate the problem of catastrophic forgetting, we need to do 
multi-task finetuning.

This requires a lot of data, and training resources.



Instruction-tuning (Full Parameter)

• We need to update all the parameters while finetuning.
• For a 7B model, we need to update 7 billion weights. For a 13 billion 

model, we need to update 13 billion weights.

• Storing and updating these weights require a lot of GPU memory.

Fun Fact: Did you know, training GPT-4 involved ~25,000 
A100 GPUs over ~90-100 days, costing OpenAI nearly $100 
million!

22



Instruction-tuning (Full Parameter)

Fun Fact: Did you know, training GPT-4 involved ~25,000 
A100 GPUs over ~90-100 days, costing OpenAI nearly $100 
million!
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Instruction-tuning (Full Parameter)

24

Let’s take a fine-tuning example now.

Say we want to finetune a 10 billion parameter model. Let’s see how
that looks in memory.

Assuming, we’re working with FP16 (half precision), which takes 
approximately 2 bytes per parameter.



Instruction-tuning (Full Parameter)

Assuming, we’re working with FP16 (half precision), which takes 
approximately 2 bytes per parameter.

10B parameter model

Parameters(FP16) 20GB

Gradient(FP16) 20GB

Optimizer 
States(FP32)

120GB
Momentum 

Variance

In general, 
these states 
need more 
precision.

We use the 
Adam 

Optimizer.

25



Instruction-tuning (Full Parameter)

Assuming, we’re working with FP16 (half precision), which takes 
approximately 2 bytes per parameter.

4090
GPU

24GB

4090
GPU

24GB

4090
GPU

24GB

4090
GPU

24GB

4090
GPU

24GB

4090
GPU

24GB

4090
GPU

24GB

This model needs 
at least 7 top-of-the- 
line consumer-grade

GPU’s to finetune.
26

10B parameter model

Parameters(FP16) 20GB

Gradient(FP16) 20GB

Optimizer 
States(FP32)

Momentum 
Variance

120GB



Instruction-tuning (Full Parameter)

This makes full parameter finetuning inaccessible to normal folks 
like us.

So, what can we 
do?

27



Outline

• Training Cycle –  LLM
• Instruction-tuning

• Full Parameter
• PEFT

• LoRA
• QLoRA



Instruction-tuning (PEFT)

PEFT stands for Parameter Efficient Finetuning.

Unlike full parameter finetuning, PEFT preserves the vast majority of
the model’s original weights.

There are majorly three methods to do PEFT.
1. Additive
2. Selective
3. Reparameterization

29



Instruction-tuning (PEFT)

Source: paper “Scaling Down to Scale Up”
(arxiv.org3)1

Add trainable layers or 
parameters to model

Add new trainable 
layers to the 

architecture called 
‘Adapters’

Focuses on 
manipulating the input 

(not the same as 
prompt engineering)

Subsets the 
parameters to 

finetune

Reparametrize model 
weights using a new 

representation

https://arxiv.org/pdf/2303.15647
https://arxiv.org/pdf/2303.15647


Instruction-tuning (PEFT)
There are a lot of techniques. We’re interested in LoRA, which is one of

the most popular.

Source: paper “Scaling Down to Scale Up”
(arxiv.org33)

https://arxiv.org/pdf/2303.15647
https://arxiv.org/pdf/2303.15647
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LoRA - Intuition

LoRA revolves around the idea that any matrix W ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛  can 
be decomposed into 𝐖𝐖 = 𝑩𝑩𝑨𝑨 where 𝐵𝐵 ∈ 𝑅𝑅𝑚𝑚×𝑟𝑟 and A ∈ 𝑅𝑅𝑟𝑟×𝑛𝑛

= ×

𝑊𝑊 𝐵𝐵 𝐴𝐴

Rank 1

37



LoRA - Intuition

LoRA revolves around the idea that any matrix W ∈ 𝑅𝑅𝑚𝑚×𝑛𝑛  can 
be decomposed into 𝐖𝐖 = 𝑩𝑩𝑨𝑨 where 𝐵𝐵 ∈ 𝑅𝑅𝑚𝑚×𝑟𝑟 and A ∈ 𝑅𝑅𝑟𝑟×𝑛𝑛

= ×

𝑊𝑊 𝐵𝐵 𝐴𝐴

25 10
elements elements
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LoRA - Intuition

We can even increase the rank to get better performance.

= ×

𝑊𝑊 𝐵𝐵 𝐴𝐴

25 10
elements elements

39



LoRA - Working

Now, we use the same concept of matrix decomposition

Remember, we are decomposing the update matix (Δ𝑊𝑊), and 
not the original weights 𝑊𝑊0.

Initial 
LLM

Weights

while finetuning an LLM.
Update
matrix

Decomposed 
matrices

Scaling 
parameter

40

Rank of
𝐵𝐵𝐴𝐴



LoRA - Working

We initialize B using a zero matrix, and A using a normal 
distribution.

Now, let’s look at this diagrammatically.

42



LoRA - Working

Pretrained 
Weights

W ε ℝ𝑑𝑑×𝑑𝑑

X

𝑑𝑑

A = 𝛮𝛮(0, 𝜎𝜎2)

𝑟𝑟

𝐵𝐵 = 0

ℎ

Notice how the reparameterization (LoRA) runs parallel to the
original model.
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LoRA - Working

Pretrained 
Weights

W ε ℝ𝑑𝑑×𝑑𝑑

X

𝑑𝑑

ℎ Backward 
Pass

During the 
backward pass, we 
don’t use the pre- 
trained weights and 
the gradients only 
flow through the 
adapters.

A = 𝛮𝛮(0, 𝜎𝜎2)

𝑟𝑟

𝐵𝐵 = 0

Notice how the reparameterization (LoRA) runs parallel to the
original model.
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LoRA - Working

Pretrained 
Weights

W ε ℝ𝑑𝑑×𝑑𝑑

X

𝑑𝑑

ℎ
At inference time, 
the update matrix 

can be merged with 
the original model 
weights to make 

the process 
efficient.

A = 𝛮𝛮(0, 𝜎𝜎2)

𝑟𝑟

𝐵𝐵 = 0

Notice how the reparameterization (LoRA) runs parallel to the
original model.
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LoRA - Intuition

Let’s explore the scale at which LoRA can help reduce 
the number of parameters needed to achieve 

comparable performance!

48



LoRA - Intuition

Number of trainable parameters

Rank Model 7B Model 13B Model 70B Model 180B

1 167K 228K 529K 849K

2 334k 456k 1M 2M

8 1M 2M 4M 7M

16 3M 4M 8M 14M

512 86M 117M 270M 434M

1024 171M 233M 542M 869M

8192 1.4B 1.8B 4.3B 7B

Full 7B 13B 70B 180B

49
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LoRA - Intuition

Number of trainable parameters

Rank Model 7B Model 13B Model 70B Model 180B

1 167K 228K 529K 849K

2 334K 456K 1M 2M

8 1M 2M 4M 7M

16 3M 4M 8M 14M

512 86M 117M 270M 434M

1024 171M 233M 542M 869M

8192 1.4B 1.8B 4.3B 7B

Full 7B 13B 70B 180B

This is a generalization considering an LLM of one layer. LLMs are made up of multiple layers.

52



LoRA - Advantages

53

Compared to full parameter finetuning, LoRA has the following 
advantages:

1. Much faster
2. Finetuning can be achieved using less GPU memory
3. Cost efficient
4. Less prone to “catastrophic forgetting” since the original model

weights are kept the same.



LoRA –  Isn’t it enough?

Optimizer 
State 
(FP32)

54

Base Model 
(FP16)

10B → 160GB

Full Parameter 
Fine Tuning



LoRA –  Isn’t it enough?

Optimizer 
State 
(FP32)
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10B → 160GB

Full Parameter 
Fine Tuning



LoRA –  Isn’t it enough?

Optimizer 
State 
(FP32)

Base Model 
(FP16)

10B → 160GB

Full Parameter 
Fine Tuning

A
Optimizer 
State 
(FP32)

Base Model 
(FP16)

10B → ~40GB

LoRA

A

B

B

56

LoRA
Adapter 
(FP16)



LoRA –  Isn’t it enough?

Optimizer 
State 
(FP32)

Base Model 
(FP16)

Full Parameter 
Fine Tuning

Optimizer 
State 
(FP32)

Base Model 
(FP16)

LoRA

A

A

B

B

57

LoRA
Adapter 
(FP16)

10B → ~40GB

This will be frozen. 
So, no optimization, 
but the parameters

still needs to be
stored in memory

10B →for16fo0rGwBard pass



LoRA –  Isn’t it enough?

As we can see below, LoRA’s performance is comparative to full 
parameter fine-tuning and, in some cases, even outperforms it.

These metrics are 
used for performance 

evaluation.



• LoRA reduces the trainable parameters and memory 
requirements while maintaining good performance.

• LoRA adds pairs of rank decomposition weight matrices (called 
update matrices) to each layer of the LLM.

• Only the update matrices, which have significantly fewer 
parameters than the original model weights, are trained.

60

LoRA - Summary
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QLoRA

62

• QLoRA is the extended version of LoRA which works mainly by 
quantizing the precision of the network parameters.

• Before we dive into what QLoRA is, let’s look at what quantization
is.

Think of quantization as ‘ splitting range into buckets ’.



QLoRA

Think of quantization as ‘ splitting range into buckets ’.

27 55.3 83.78

Any number between
0 and 100

Quantized by
whole numbers

27 55 83

20 50 80

Quantized by
10s

1 num =
infinite bytes

63

1 num =
0.875 bytes

1 num =
0.5 bytes
(3 bits ~
0.375 bytes)



QLoRA
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Let’s look at an example!

Let 𝑋𝑋𝐹𝐹𝑃𝑃32 be an array of values.

1.5 2.3 3.7 4.1 5.6 6.8 7.9 8.4 9.2 10.2

Here, FP32 refers to a 32- 
bit floating-point 

number.

What if we want to quantize from FP32 to Int8?



QLoRA

So, to quantize 𝑋𝑋𝐹𝐹𝑃𝑃32 to 𝑋𝑋𝐼𝐼𝑛𝑛𝑡𝑡8 :

Int8 values range from -127 to 
127

The absolute maximum value 
in the array, 𝑋𝑋𝐹𝐹𝑃𝑃32 .

Array of values

65



QLoRA

𝑋𝑋𝐼𝐼𝑛𝑛𝑡𝑡8  = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑(𝑐𝑐𝐹𝐹𝑃𝑃32𝑋𝑋𝐹𝐹𝑃𝑃32)

So, to quantize 𝑋𝑋𝐹𝐹𝑃𝑃32 to 𝑋𝑋𝐼𝐼𝑛𝑛𝑡𝑡8 :
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QLoRA

𝑋𝑋𝐼𝐼𝑛𝑛𝑡𝑡8  = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑(𝑐𝑐𝐹𝐹𝑃𝑃32𝑋𝑋𝐹𝐹𝑃𝑃32)

So, to quantize 𝑋𝑋𝐹𝐹𝑃𝑃32 to 𝑋𝑋𝐼𝐼𝑛𝑛𝑡𝑡8 :
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QLoRA
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1.5 2.3 3.7 4.1 5.6 6.8 7.9 8.4 9.2 10.2

𝑋𝑋𝐼𝐼𝑛𝑛𝑡𝑡8 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑(𝑐𝑐𝐹𝐹𝑃𝑃32𝑋𝑋𝐹𝐹𝑃𝑃32)

In our example,

𝑋𝑋𝐹𝐹𝑃𝑃32

𝑐𝑐𝐹𝐹𝑃𝑃32 = 127
𝑎𝑎𝑏𝑏𝑠𝑠𝑚𝑚𝑎𝑎𝑥𝑥  𝑋𝑋𝐹𝐹𝑃𝑃32 = 127

10.2
= 12.4509

Now, we combine the formula and the values that we
have



QLoRA
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𝑋𝑋𝐼𝐼𝑛𝑛𝑡𝑡8 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑(12.4509 x 1.5 2.3 3.7 4.1 5.6 6.8 7.9 8.4 9.2 10.2 )

𝑋𝑋𝐼𝐼𝑛𝑛𝑡𝑡8 = 18 29 46 51 69 85 98 105 115 127

Voila! That’s how we quantize from FP32 to Int8 using the formula:

𝑋𝑋𝐼𝐼𝑛𝑛𝑡𝑡8 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑(𝑐𝑐𝐹𝐹𝑃𝑃32𝑋𝑋𝐹𝐹𝑃𝑃32)



QLoRA

Now that we know what quantization is, let’s look at how QLoRA 
works!

To dequantize:

𝑋𝑋𝐼𝐼𝑛𝑛𝑡𝑡8  = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑(𝑐𝑐𝐹𝐹𝑃𝑃32𝑋𝑋𝐹𝐹𝑃𝑃32)

What if we want to dequantize and get back the original array,
𝑋𝑋𝐹𝐹𝑃𝑃32?

Dequantization

70
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QLoRA –  The Pizza

Imagine QLoRA to be a mouthwatering pizza.

Now, to make a pizza, we need to gather a few key ingredients!

71



QLoRA –  The Ingredients

4-Bit NormalFloat

There are 3 key ingredients which helps us make QLoRA:

Paged Optimizer

72

Double Quantization



QLoRA –  Ingredient 1: 4-Bit NormalFloat

4-bit NormalFloat
4-bit NormalFloat is a clever way to split 
the buckets.

4-bit means we have
24 = 16 possible buckets for quantization.

Equally spaced buckets

0

Equally sized buckets
This is an enhanced version of

quantile quantization.
73



QLoRA –  Ingredient 1: 4-Bit NormalFloat

Why use 4-bit NormalFloat
Designed for efficient storage and 
computation in machine learning.

Most datasets in machine learning are 
normally distributed and precision 
around the mean is valuable.

Equally spaced buckets

0

Equally sized buckets
This is an enhanced version of

quantile quantization.
74



4-Bit NormalFloat

There are 3 key ingredients which helps us make QLoRA:

QLoRA –  The Ingredients

75

Paged OptimizerDouble Quantization



QLoRA –  Ingredient 2: Double Quantization

Remember this formula? Takes up 
memory

76

𝑋𝑋𝐼𝐼𝑛𝑛𝑡𝑡8  = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑(𝑐𝑐𝐹𝐹𝑃𝑃32𝑋𝑋𝐹𝐹𝑃𝑃32)

Which is not an issue, as it’s just 1 constant. Right?

Now, if we think about this in terms of neural networks….



QLoRA –  Ingredient 2: Double Quantization
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Weight Tensor

-0.7 -0.3 0.0 -0.4 0.3

-1.0 0.2 0.7 1.7 -0.9

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1

Now, if we think about this in terms of neural networks….

Let’s take a 5x5 matrix to be the weights in a neural 
network:



QLoRA –  Ingredient 2: Double Quantization

Now, if we think about this in terms of neural networks….

-4 -2 0 -22 16

-60 10 40 99 -57

-5 -88 -9 48 27

72 -100 -50 -18 40

22 8 -81 127 -66

Rescale all parameters

𝑢𝑢𝑠𝑠𝑖𝑖𝑛𝑛𝑔𝑔 𝑐𝑐

Rescaled Weight Tensor

𝑊𝑊𝐹𝐹𝑃𝑃32𝑐𝑐𝐹𝐹𝑃𝑃32 = 𝑊𝑊𝐼𝐼𝑛𝑛𝑡𝑡8𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑If we bring back the formula:
78

Weight Tensor

-0.7 -0.3 0.0 -0.4 0.3

-1.0 0.2 0.7 1.7 -0.9

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1



QLoRA –  Ingredient 2: Double Quantization

Now, if we think about this in terms of neural networks….

Weight Tensor Rescaled Weight Tensor

-0.7 -0.3 0.0 -0.4 0.3 -4 -2 0 -22 16

-1.0 0.2 0.7 1.7 -0.9 Rescale all parameters -60 10 40 99 -57

-0.1 -1.5 -0.1 0.8 0.5 -5 -88 -9 48 27

𝑢𝑢𝑠𝑠𝑖𝑖𝑛𝑛𝑔𝑔 𝑐𝑐
1.2 -1.7 -0.9 -0.3 0.7 72 -100 -50 -18 40

0.4 0.1 -1.4 2.2 -1.1 22 8 -81 127 -66

If we bring back the formula: 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑 𝑊𝑊𝐹𝐹𝑃𝑃32𝑐𝑐𝐹𝐹𝑃𝑃32 = 𝑊𝑊𝐼𝐼𝑛𝑛𝑡𝑡8
PROTOPAPAS 79

We quantize to Int8 for simplicity but
when we implement QLoRA we use

4-bit Normal Float.
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Now, if we think about this in terms of neural networks….

22 8 -81

-4 -2 0 -22 16

-60 10 40 99 -57

-5 -88 -9 48 27

72 -100 -50 -18 40

Rescale all parameters

𝑢𝑢𝑠𝑠𝑖𝑖𝑛𝑛𝑔𝑔 𝑐𝑐

Rescaled Weight TensorWeight Tensor

-0.7 -0.3 0.0 -0.4 0.3

-1.0 0.2 0.7 1.7 -0.9

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1 127Do y-6o6u see a 
problem

here?

𝑊𝑊𝐹𝐹𝑃𝑃32𝑐𝑐𝐹𝐹𝑃𝑃32 = 𝑊𝑊𝐼𝐼𝑛𝑛𝑡𝑡8𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑If we bring back the formula:
80
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Let’s see how the weight tensors look like on the graph.

+10000

0

This is unbounded and could take up any maximum value (an outlier!).

81



QLoRA –  Ingredient 2: Double Quantization

Let’s see how the weight tensors look like on the graph.

0
This could 

introduce bias
This is unbounded and could take up any maximum value (an ouitnloieurr!).

quantization
process

+10000
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Let’s see how the weight tensors look like on the graph.

+10000

0 in 
This could 

stroduce bia
This is unbounded and could take up any maximum value (an ouitnloieur!).r

quantization
process

PROTOPAPAS 83

So, how do we avoid this problem?
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The answer to that is: Block-wise Quantization, which is the first 
step in Double Quantization!

Let’s look at an example to understand this concept.

We take the weight tensor that we saw in the previous slides.

Weight Tensor (𝑊𝑊𝐹𝐹𝑃𝑃32)

-0.7 -0.3 0.0 -0.4 0.3

-1.0 0.2 0.7 1.7 -0.9

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1



-0.1 -1.5 -0.1 0.8

QLoRA –  Ingredient 2 : Double Quantization
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𝑐𝑐𝑖𝑖 𝑐𝑐𝑗𝑗 𝑐𝑐𝑘𝑘 𝑐𝑐𝑙𝑙 𝑐𝑐𝑚𝑚

We flatten the matrix as follows:

Now we divide it up into different blocks.

We calculate the quantization constants for each block.

Weight Tensor (𝑊𝑊𝐹𝐹𝑃𝑃32)

-0.7 -0.3 0.0 -0.4 0.3 -1.0 0.2 0.7 1.7 -0.9 0.5 1.2 -1.7 -0.9 -0.3 0.7 0.4 0.1 -1.4 2.2 -1.1

If there are any outliers in a block, they won’t
affect the quantisation in the other blocks.



-0.1 -1.5 -0.1 0.8

QLoRA –  Ingredient 2 : Double Quantization
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Weight Tensor (𝑊𝑊𝐹𝐹𝑃𝑃32)

-0.7 -0.3 0.0 -0.4 0.3 -1.0 0.2 0.7 1.7 -0.9 0.5 1.2 -1.7 -0.9 -0.3 0.7 0.4 0.1 -1.4 2.2 -1.1

𝑐𝑐𝑖𝑖 𝑐𝑐𝑗𝑗 𝑐𝑐𝑘𝑘 𝑐𝑐𝑙𝑙 𝑐𝑐𝑚𝑚
181.4 74.7 84.7 74.7 57.7

-127 -54 0 -73 54 -77 13 51 127 -74 -9 -127 -12 70 40 93 -127 -64 -24 52 22 8 -81 127 -66

We now rescale all the parameters per block.

Rescaled Weight Tensor (𝑊𝑊𝐼𝐼𝑛𝑛𝑡𝑡8)

𝑎𝑎𝑏𝑏𝑠𝑠𝑚𝑚𝑎𝑎𝑥𝑥 𝐶𝐶𝐹𝐹𝑃𝑃32

127 
𝐶𝐶𝐼𝐼𝑛𝑛𝑡𝑡8 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑( 𝐶𝐶𝐹𝐹𝑃𝑃32)



We now have a new array:

QLoRA –  Ingredient 2 : Double Quantization

1𝑐𝑐𝐹𝐹𝑃𝑃32 𝑐𝑐𝑖𝑖 𝑐𝑐𝑗𝑗 𝑐𝑐𝑘𝑘 𝑐𝑐𝑙𝑙 𝑐𝑐𝑚𝑚

Now, we repeat the same process of quantization for the 
quantization constants.

𝑐𝑐𝐼𝐼𝑛𝑛𝑡𝑡8 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑(𝑐𝑐𝐹𝐹𝑃𝑃32𝑐𝑐𝐹𝐹𝑃𝑃32)1 2 1

Double Quantization

𝑐𝑐𝐹𝐹𝑃𝑃32 is an array of

87

1
all the constants

from each block of 
the Weight Tensor.
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𝑐𝑐𝐼𝐼𝑛𝑛𝑡𝑡8 = 𝑟𝑟𝑜𝑜𝑢𝑢𝑛𝑛𝑑𝑑(𝑐𝑐𝐹𝐹𝑃𝑃32𝑐𝑐𝐹𝐹𝑃𝑃32)1 2 1

Let’s see the difference in memory usage before and after
Double Quantization.



QLoRA –  Ingredient 2 : Double Quantization
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Before

Weight Tensor (𝑊𝑊𝐹𝐹𝑃𝑃32)

-0.7 -0.3 0.0 -0.4 0.3

-1.0 0.2 0.7 1.7 -0.9

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1

Next, let’s look at the memory usage after
Double Quantization.

All we had was a weight matrix containing FP32 values.

In our example, we had a 5x5 matrix.

Each value was 4 bytes in size.

So, the total memory used 25x4=100 bytes
was:



QLoRA –  Ingredient 2 : Double Quantization
Before 25x4=100 bytes

After
-127 -54 0 -73 54

-77 13 51 127 -74

-9 -127 -12 70 40

93 -127 -64 -24 52

22 8 -81 127 -66

Rescaled Weight Tensor 
(𝑊𝑊𝐼𝐼𝑛𝑛𝑡𝑡8)

25x1=25 bytes.

𝑐𝑐𝑖𝑖 𝑐𝑐𝑗𝑗 𝑐𝑐𝑘𝑘 𝑐𝑐𝑙𝑙 𝑐𝑐𝑚𝑚

1𝑐𝑐𝐼𝐼𝑛𝑛𝑡𝑡8

5x1=5bytes.

2𝑐𝑐𝐹𝐹𝑃𝑃32

4 bytes

So, in total:

25 + 5 + 4 = 34 bytes

91
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Before

25x4=100 bytes

After

25 + 5 + 4 = 34 bytes

That is an approximate 70% reduction in memory
usage!!

-127 -54 0 -73 54

-77 13 51 127 -74

-9 -127 -12 70 40

93 -127 -64 -24 52

22 8 -81 127 -66

𝑐𝑐𝑖𝑖 𝑐𝑐𝑗𝑗 𝑐𝑐𝑘𝑘 𝑐𝑐𝑙𝑙 𝑐𝑐𝑚𝑚

2𝑐𝑐𝐹𝐹𝑃𝑃32

-0.7 -0.3 0.0 -0.4 0.3

-1.0 0.2 0.7 1.7 -0.9

-0.1 -1.5 -0.1 0.8 0.5

1.2 -1.7 -0.9 -0.3 0.7

0.4 0.1 -1.4 2.2 -1.1



4-Bit NormalFloat

There are 3 key ingredients which helps us make QLoRA:

QLoRA –  The Ingredients

95

Paged OptimizerDouble Quantization



QLoRA –  Ingredient 3

96

So, how do we train a modern Neural Networks without taking a hit 
on the memory?

We use gradient checkpointing.

Running Out of Memory!

Before we talk about the third ingredient in QLoRA, let’s talk about
a problem.

A problem which all of us have faced while training a Neural 
Network



QLoRA –  Ingredient 3

Imagine this simple neural network

Layer 1

97

Layer 2 Layer 3 Layer 4

When we do a forward-pass, we calculate the activations for 
each layer.

X ℎ1 ℎ2 ℎ3 𝑦𝑦
ෙ◌ා



QLoRA –  Ingredient 3

Modern-day computers have become very efficient at parallel 
processing. What they lack is memory.

We don’t need to store all the hidden states.

Layer 1 Layer 2 Layer 3

However, this takes up precious memory.

98

Layer 4

X ℎ1 ℎ2 ℎ3 𝑦𝑦
ෙ◌ා
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X

Layer 1

99

Layer 2 Layer 3 Layer 4

ℎ1 ℎ2 ℎ3 𝑦𝑦
ෙ◌ා

We only store in memory what is needed at the moment.

We keep discarding activations that have already been used to 
calculate the next dependent hidden state’s activation.

So, let’s see how it looks!



QLoRA –  Ingredient 3

X

Layer 1

100

Layer 2 Layer 3 Layer 4

𝑦𝑦
ෙ◌ා

During backpropagation, we must recompute all the discarded 
activations.

To manage this, we introduce checkpoints in the middle.



QLoRA –  Ingredient 3

𝑛𝑛 layer, considering weCheckpoints are usually placed at every 
have a n-layer neural network.

So, now when we re-compute the activations for backward pass,
we don’t have to start from the beginning!

Layer 1

101

Layer 2 Layer 3 Layer 4

X ℎ1 ℎ2 ℎ3 𝑦𝑦
ෙ◌ා
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Layer 1

102

Layer 2 Layer 3 Layer 4

X ℎ2 𝑦𝑦
ෙ◌ා

This allows us to mitigate the OOM (Out of memory) error to some
extent, but it doesn’t get rid of it!

We still see some memory spikes especially when we pass in long 
sequences in the batch.



QLoRA –  Ingredient 3

X ℎ2 𝑦𝑦ෙ◌ා

Layer 1 Layer 2 Layer 3 Layer 4

This allows us to mitigate the OOM (Out of memory) error to some
extent, but it doesn’t get rid of it!

We still see some memory spikes especially when we pass in long 
sequences in the batch.

PROTOPAPAS 103

This is where our third ingredient comes
in!



QLoRA –  Ingredient 3 : Paged Optimizer

It does automatic page-to-page transfers between CPU and GPU

Avoids the gradient checkpointing memory spikes that occur when 
processing a mini batch with a long sequence length.

CPUGPU

Paged Optimizer - Looping in your CPU
Paging is a memory 

management technique, where 
RAM is divided into fixed-size 

blocks called ‘pages’

GPU Memory is full
GPU Memory has 

space now.
Now that the GPU has 
space, when a page 

moved to CPU is required, 
we move it back to GPU 

for computation.

104



4-Bit NormalFloat

We saw the 3 key ingredients needed to make QLoRA:

QLoRA –  The Ingredients

105

Paged OptimizerDouble Quantization

Let’s bring it all
together



QLoRA –  Putting it all together

Optimizer 
State 
(FP32)

Base Model

10B => 160GB

Full Parameter 
Fine Tuning

Optimizer 
State 
(FP32)

Base Model

10B => ~40GB

LoRA

A

A

B

B

106

LoRA
Adapter 
(FP16)

FP16FP16



QLoRA –  Putting it all together

Pretrained 
Weights

W ε ℝ𝑑𝑑×𝑑𝑑

X

𝑑𝑑

A = 𝛮𝛮(0, 𝜎𝜎2)

𝑟𝑟

𝐵𝐵 = 0

ℎ

BF16

BF16

BF16

In QLoRA we use BF16 
(BrainFloat16) as compared to 
FP16 in LoRA.

This leads to a change in 
precision which is tailor-made for 
deep learning tasks.

Before we talk about the 3 
ingredients, there is another key 
difference that we should know.

107
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Pretrained 
Weights

W ε ℝ𝑑𝑑×𝑑𝑑

X

𝑑𝑑

ℎ

BF16
BF16

BF16

Ingredient 1:

4-Bit NormalFloat

We store W, as 4-Bit NormalFloat

To convert and store, we make use of 
Double Quantization!

Ingredient 2:
Double Quantization

NF4
A = 𝛮𝛮(0, 2𝜎𝜎 2 )A = 𝛮𝛮(0, 𝜎𝜎  )

𝑟𝑟

𝐵𝐵 = 0

108
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Pretrained 
Weights

W ε ℝ𝑑𝑑×𝑑𝑑

X

𝑑𝑑

ℎ

BF16

BF16
NF4

We then use the BF16 values of W, A 
and B to perform the required 
calculations.

BF16

Forward Pass

During the forward pass, we first 
dequantize the W weights from NF4 
to BF16 for computation.

The BF16 values of W is then deleted
to save on storage!

A = 𝛮𝛮(0, 𝜎𝜎2)

𝑟𝑟

𝐵𝐵 = 0

109
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Pretrained 
Weights

W ε ℝ𝑑𝑑×𝑑𝑑

X

𝑑𝑑

ℎ

BF16

BF16
NF4

As in LoRA, we keep W weights 
frozen and allow the gradients to 
only flow through the adapters.

We then repeat the cycle of forward 
and backward passes till a minima 
is reached.

Backward Pass

A = 𝛮𝛮(0, 𝜎𝜎2)

𝑟𝑟

𝐵𝐵 = 0

110
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QLoRA –  Putting it all together
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Base Model

10B => ~12GB

QLoRA

Optimizer 
State (FP32)

LoRA Adapter 
(BF16)

4bit NormalFloat

CPU

Pages are moved to the CPU 
from the GPU when it does not 
have space and moved back to 
GPU for when it’s required and 

there is space.

Paged 
Optimizer

Ingredient 3:



QLoRA –  Putting it all together

Putting it mathematically,

Let’s start with LoRA:

Weights of LoRA: 𝛼𝛼

Forward pass in LoRA:

Initial 
LLM

Weights Decomposed 
matrices

Scaling 
parameter

𝑊𝑊0 + 𝑟𝑟 𝐵𝐵𝐴𝐴

Rank of B 
and A

112
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where 𝑑𝑑𝑜𝑜𝑢𝑢𝑏𝑏𝑙𝑙𝑒𝑒𝐷𝐷𝑒𝑒𝑞𝑞𝑢𝑢𝑎𝑎𝑛𝑛𝑡𝑡 𝑐𝑐𝐹𝐹𝑃𝑃32, 𝑐𝑐𝑘𝑘−𝑏𝑏𝑖𝑖𝑡𝑡, 𝑊𝑊𝑁𝑁𝐹𝐹4
1 2 𝑜𝑜

= 𝑑𝑑𝑒𝑒𝑞𝑞𝑢𝑢𝑎𝑎𝑛𝑛𝑡𝑡 𝑑𝑑𝑒𝑒𝑞𝑞𝑢𝑢𝑎𝑎𝑛𝑛𝑡𝑡 cFP32, ck−bit
1 2 𝑜𝑜, W4bit

Y = X𝑊𝑊0 + 𝑋𝑋𝐵𝐵𝐴𝐴

Let’s expand the formula and see how it looks!

𝑌𝑌𝐵𝐵𝐹𝐹16 = 𝑋𝑋𝐵𝐵𝐹𝐹16𝑑𝑑𝑜𝑜𝑢𝑢𝑏𝑏𝑙𝑙𝑒𝑒𝐷𝐷𝑒𝑒𝑞𝑞𝑢𝑢𝑎𝑎𝑛𝑛𝑡𝑡 𝑐𝑐𝐹𝐹𝑃𝑃32, 𝑐𝑐𝑘𝑘−𝑏𝑏𝑖𝑖𝑡𝑡, 𝑊𝑊𝑁𝑁𝐹𝐹4
1 2 𝑜𝑜 𝑟𝑟

113

𝛼𝛼
+ 𝑋𝑋𝐵𝐵𝐹𝐹16𝐵𝐵𝐵𝐵𝐹𝐹16𝐴𝐴𝐵𝐵𝐹𝐹16

= WBF16



THANK YOU


	Parameter Efficient Finetuning
	Outline
	Outline
	Training Cycle - LLM
	Training Cycle - LLM
	Training Cycle - LLM
	Training Cycle - LLM
	Training Cycle - LLM
	Training Cycle - LLM
	Training Cycle - LLM
	Slide Number 11
	Outline
	Instruction-tuning (Full Parameter)
	Instruction-tuning (Full Parameter)
	Instruction-tuning (Full Parameter)
	Instruction-tuning (Full Parameter)
	Instruction-tuning (Full Parameter)
	Instruction-tuning (Full Parameter)
	Instruction-tuning (Full Parameter)
	Instruction-tuning (Full Parameter)
	Instruction-tuning (Full Parameter)
	Instruction-tuning (Full Parameter)
	Instruction-tuning (Full Parameter)
	Instruction-tuning (Full Parameter)
	Instruction-tuning (Full Parameter)
	Outline
	Instruction-tuning (PEFT)
	Instruction-tuning (PEFT)
	Instruction-tuning (PEFT)
	Outline
	LoRA - Intuition
	LoRA - Intuition
	LoRA - Intuition
	LoRA - Working
	LoRA - Working
	LoRA - Working
	LoRA - Working
	LoRA - Working
	LoRA - Intuition
	LoRA - Intuition
	LoRA - Intuition
	LoRA - Intuition
	LoRA - Intuition
	LoRA - Advantages
	LoRA – Isn’t it enough?
	LoRA – Isn’t it enough?
	LoRA – Isn’t it enough?
	LoRA – Isn’t it enough?
	LoRA – Isn’t it enough?
	LoRA - Summary
	Outline
	QLoRA
	QLoRA
	QLoRA
	QLoRA
	QLoRA
	QLoRA
	QLoRA
	QLoRA
	QLoRA
	QLoRA – The Pizza
	QLoRA – The Ingredients
	QLoRA – Ingredient 1: 4-Bit NormalFloat
	QLoRA – Ingredient 1: 4-Bit NormalFloat
	QLoRA – The Ingredients
	QLoRA – Ingredient 2: Double Quantization
	QLoRA – Ingredient 2: Double Quantization
	QLoRA – Ingredient 2: Double Quantization
	QLoRA – Ingredient 2: Double Quantization
	QLoRA – Ingredient 2: Double Quantization
	QLoRA – Ingredient 2: Double Quantization
	QLoRA – Ingredient 2: Double Quantization
	So, how do we avoid this problem?
	QLoRA – Ingredient 2 : Double Quantization
	QLoRA – Ingredient 2 : Double Quantization
	QLoRA – Ingredient 2 : Double Quantization
	QLoRA – Ingredient 2 : Double Quantization
	QLoRA – Ingredient 2 : Double Quantization
	QLoRA – Ingredient 2 : Double Quantization
	QLoRA – Ingredient 2 : Double Quantization
	QLoRA – Ingredient 2 : Double Quantization
	QLoRA – The Ingredients
	QLoRA – Ingredient 3
	QLoRA – Ingredient 3
	QLoRA – Ingredient 3
	QLoRA – Ingredient 3
	QLoRA – Ingredient 3
	QLoRA – Ingredient 3
	QLoRA – Ingredient 3
	This is where our third ingredient comes
	QLoRA – Ingredient 3 : Paged Optimizer
	QLoRA – The Ingredients
	QLoRA – Putting it all together
	QLoRA – Putting it all together
	QLoRA – Putting it all together
	QLoRA – Putting it all together
	QLoRA – Putting it all together
	QLoRA – Putting it all together
	QLoRA – Putting it all together
	QLoRA – Putting it all together
	THANK YOU

