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Logistics

* Homework 3 is due tonight.
* Use all your late/slip days if you need now.
* No late days for final project deadlines.



L ectures so far

1. Warm-up (4 lectures): Practical Intro to Machine/Deep Learning w/ an NLP application.
2. Modern LM fundaments (12 lectures): Background, key ingredients.
3. Linguistic Structure Prediction (2 lectures).

4. Rest of the lectures: Modern LMs in practice.
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P ip e ]jne NAME COMPONENT CREATES DESCRIPTION
tokenizer Tokenizer = Doc Segment text into
tokens.
processing
pipeline
tagger Tagger = Token.tag Assign part-of-
speech tags.
parser DependencyParser =  Token.head, Token.dep, Assign dependency
Doc.sents, labels.
Doc.noun_chunks
ner EntityRecognizer = Doc.ents, Detect and label
Token.ent_iob , named entities.
Token.ent_type
lemmatizer Lemmatizer = Token.lemma Assign base forms.
textcat TextCategorizer = Doc.cats Assign document
labels.
custom custom components Doc._.XXX , Assign custom

Source: https://spacy.io/usage/processing-pipelines

Token._.xxx,
Span. _.Xxxx

attributes, methods
or properties.

spaCy


https://spacy.io/usage/processing-pipelines
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https://arxiv.org/abs/2405.05966

Why should you know classic NLP tasks focused on
aspects of the language system? (cont.) oui. wen. schneider. 20243

Interpretability:
We would lack appropriate meta-language for describing many observed patterns

An illustration of this for the question of whether LLMs understand meaning:

e Learningalanguage: learning how surface forms (language text) connect to underlying structures

e When people and machines do this explicitly = parsing (part-of-speech tagging, named entity
recognition, phrase chunking, coreference resolution)

e How is this core problem addressed in deep learning systems (and in human sentence processing)?

Study of language:
Corpus linguistics, documentary and historical linguistics, ...


https://arxiv.org/abs/2405.05966

Goals of Today’s Lecture

Goal: Learn two classic sequence labeling tasks and a non-neural supervised approach to solving them

® Part-of-Speech (PoS) Tagging

e Named Entity Recognition (NER)

e Hidden Markov Model: Formulation

e Hidden Markov Model: Parameter estimation

® Viterbialgorithm



Parts of Speech (POS)

Part of Speech (POS) are categories of words based on:

¢  their grammatical relationship with neighboring words

or

¢ morphological properties about their affixes
O  Thestem is the part of the word that carries its primary lexical meaning; often a root or base form
O  Affixes: Morphemes that are attached to a word stem to form a new word or word form
m  Prefix: Pre-in Preview
m  Suffix: -ed in Played
O  Morphological: Relating to the forms of words
m  Walk — Walking (suffix -ing changes the form and grammatical function)

m  Happy — Unhappy (prefix un- changes the meaning)



Two classes of words: Open vs. Closed

Closed class words

¢  Relatively fixed membership, meaning new words in this class are rarely coined

¢  Function words: Short, frequent words with grammatical function
o  Determiners: 3, an, the
o  Pronouns: she, he, |
o  Prepositions: on, under, over, near, by, ...

¢  PoS tags of such words are deterministic

Open class words

¢  Continually being created or borrowed
¢ Nouns (including proper nouns), verbs, adjectives, adverbs, & interjections

Jurafsky & Martin Section 17.1 define many classes of words that you should familiarize yourself with: different
types of nouns, adverbs, verbs, pronouns; particle, article, conjunction, complementizer, copula, modals, etc.



https://web.stanford.edu/%7Ejurafsky/slp3/ed3bookaug20_2024.pdf

Fun facts about other languages ©)

e InKorean, the words corresponding to English adjectives act as a subclass of verbs, so what is in English an
adjective “beautiful” acts in Korean like a verb meaning “to be beautiful”
e While many scholars believe that all human languages have the categories of noun and verb, others have

argued that some languages, such as Riau Indonesian and Tongan, don‘t even make this distinction



Ambiguity Resolution

| will book a room at the hotel
PRP MD VB DT NN IN DT NN

She is reading an interesting book
PRP VBZ VBG ~ DT JJ NN

Figure source: https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank pos.html

Number Tag

1. cC
7h CD
3. DT
4. EX
5. FwW
6. IN

T 1]

8. JIR
9. JIS
10 LS

11 MD
12 NN
13 NNS
14 NNP
15 NNPS
16 PDT
17 POS
18 PRP
19 PRPS
20 RB
21 RBR
22 RBS
23 RP
24 SYM
25 TO
26 UH
27 VB
28. VBD
29. VBG
30. VBN
3l. VBP
32. VBZ
33. WDT
34, WP
358 WP$
36. WREB

Description

Coordinating conjunction
Cardinal number

Determiner

Existential there

Foreign word

Preposition or subordinating conjunction
Adjective

Adjective, comparative
Adjective, superlative

List item marker

Modal

Noun, singular or mass

Noun, plural

Proper noun, singular

Proper noun, plural
Predeterminer

Possessive ending

Personal pronoun

Possessive pronoun

Adverb

Adverb, comparative

Adverb, superlative

Particle

Symbol

to

Interjection

Verb, base form

Verb, past tense

Verb, gerund or present participle
Verb, past participle

Verb, non-3rd person singular present
Verb, 3rd person singular present
‘Wh-determiner

‘Wh-pronoun

Possessive wh-pronoun
‘Wh-adverb



https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

POS Tagging

The task of assigning a part-of-speech to each word in a text

Input: A sequence T1, T2, . . ., Tn of (tokenized) words and a tagset

Output: A sequence Y1, Y2, - - -, Ynof tags, each output Y; corresponding exactly to one I;
An example of sequence labelling or sequence tagging:

The task of assigning a label to each unit in a sequence, thus mapping a sequence of observations to
a sequence of labels of the same length

Y4 Y, Ys Ya Vs
t ¢t ¢t ¢
Part of Speech Tagger
Janet w‘ill ba‘ck th‘e b‘in
Figure source: Jurafsky & Martin X4 X, Xy X, Xg




Why POS tagging?
Can be useful for other NLP tasks

¢  Parsing: POS tagging can improve syntactic parsing [the next step in the classical NLP pipeline]
o  Whether a word is a noun or a verb tells us about likely neighboring words (nouns in English are preceded by
determiners and adjectives, verbs by nouns)
o Italso tells us about syntactic structure (verbs have dependency links to nouns)
¢  MT: reordering of adjectives and nouns
o  Say from Spanish where adjectives come after the nouns to English where they precede the nouns
¢  Sentiment or affective tasks:
o  May want to distinguish adjectives or other POS
¢  Text-to-speech
o  How do we pronounce “lead” or “object"?

Useful for linguistic or language-analytic computational tasks

¢  Need to control for POS when studying linguistic change like creation of new words, or meaning shift
¢  Or control for POS in measuring meaning similarity or difference

Slide source: Jurafsky & Martin



How difficult is POS tagging in English?

Roughly 15% of word types are ambiguous

¢ Janetis always PROPN, hesitantly is always ADV

But those 15% tend to be very common,

so ~60% of word tokens are ambiguous Not all pQSSibIe tags for a given word are
E.g. type “back” N equally likely!

earnings growth took a back/ADIJ seat Majority baseline (useful beyond PoS

a small building in the back/NOUN tagging):

a clear majority of senators back/VERB the bill
enable the country to buy back/PART debt
| was twenty-one back/ADV then

Given a word, predict the PoS tag which is most
> frequent in the training corpus

The most-frequent-tag baseline has an
_J accuracy of ~92% on the sections 22-24 of the
WSJ corpus, only 5% lower than the SOTA and

Slide source: Jurafsky & Martin human ceiling




Sources of information for POS tagging

Prior probabilities of word/tag

o “will”is usually an AUX
|dentity of neighboring words

e “the” meansthe next word is probably not a verb
Morphology and wordshape:

® Prefixes

o unable: un- = ADJ
e Suffixes

o importantly: -ly = ADJ

e (Capitalization

o Janet: CAP = PROPN

Slide source: Jurafsky & Martin



Standard algorithms for POS tagging

Supervised Machine Learning:

Hidden Markov Models [today]

Conditional Random Fields (CRF) / Maximum Entropy Markov Models (MEMM)
Neural sequence models (RNNs or Transformers)

Pretrained (Large) Language Models (like BERT), finetuned

All required a hand-labeled training set, all about equal performance (97% on English)

All make use of information sources we discussed

e Via human created features: HMMs and CRFs
e \Viarepresentation learning: Neural LMs

Slide source: Jurafsky & Martin



Goals of Today’s Lecture

Goal: Learn two classic sequence labeling tasks and a non-neural supervised approach to solving them

® Part-of-Speech (PoS) Tagging

e Named Entity Recognition (NER)

e Hidden Markov Model: Formulation

e Hidden Markov Model: Parameter estimation

® Viterbialgorithm



Named Entities (NEs)

Named entity typically means anything that can be referred to with a proper name

Most common 4 tags:

¢ PER (Person): “Marie Curie”

¢ LOC (Location): “New York City”

¢  ORG (Organization): "Stanford University”

¢  GPE (Geo-Political Entity): "Boulder, Colorado"

But the term is also extended to things that aren't entities, e.g., dates, times, prices
Entity classes can be specialized to a domain, e.g., GENE, PROTEIN, DISEASE, ...
They may range in specificity, e.g., ANIMAL, MAMMAL, DOG_BREED, ...

Often multi-word phrases = Segmentation problem: Where does the NE start/end?

Slide source: Jurafsky & Martin



Named Entity Recognition (NER)

The task of identify all spans in the text that denote some category of entities
As sequence labeling:
Input: A sequence 1, T2, . . ., T, of (tokenized) words and the set of entity types

Output: A sequence V1, Y2, - - -, Yn of (B)IO(ES) entity tags, each output Y; corresponding exactly
toone I;

(B)IO(ES) Ta gging Words 10 Label BIO Label BIOES Label

Jane I-PER B-PER B-PER
e B:token that begins a span ;/;ﬂlanueva BPER BPER g'PER
e |:tokens inside a span United -ORG B-ORG B-ORG
e O:tokens outside of any span  Airlines I-ORG I-ORG I-ORG
, Holding I-ORG I-ORG E-ORG

o E: t(_)ken that ends a span Pl 5 5 5

e S:singleton the 0 0 0
Chicago I-LOC B-LOC S-LOC

route 0] o) O

0 0 0




Ambiguity Resolution

Type Tag Sample Categories Example sentences

People PER people, characters Turing is a giant of computer science.

Organization ORG companies, sports teams The IPCC warned about the cyclone.

Location LOC regions, mountains, seas Mt. Sanitas is in Sunshine Canyon.

Geo-Political Entity GPE countries, states Palo Alto is raising the fees for parking.
Washington was born into slavery on the farm of James Burroughs. PER
Washington went up 2 games to 1 in the four-game series. ORG
Blair arrived in Washington for what may well be his last state visit. LOC
In June, Washington passed a primary seatbelt law. GPE

Examples from: Jurafsky & Martin



Why NER?

Can be useful for other NLP tasks

¢  Targeted aspect-based sentiment analysis: Consumer’s sentiment toward a particular company or person?
¢  Question Answering: Answer questions about an entity?
¢ Information Extraction: Extracting facts about entities from text

Or linguistic or language-analytic computational tasks

¢  For example, you may want to study how British novels depicted India during the colonial period

¢  Using a corpus of novels, you could use NER to:
a. Extract locations like Calcutta, Delhi, and Himalayas to track representations of geography
b. Identify people such as Rama or Lord Cornwallis to study how individuals were characterized
c. Detect dates/events like 1857 (Indian Rebellion) for cultural context

Slide source: Jurafsky & Martin



Standard algorithms for NER

Supervised Machine Learning given a human-labeled training set of text annotated with tags

Hidden Markov Models [today]

Conditional Random Fields (CRF) / Maximum Entropy Markov Models (MEMM)
Neural sequence models (RNNs or Transformers)

Pretrained (Large) Language Models (like BERT), finetuned

Slide source: Jurafsky & Martin



Goals of Today’s Lecture

Goal: Learn two classic sequence labeling tasks and a non-neural supervised approach to solving them

® Part-of-Speech (PoS) Tagging

e Named Entity Recognition (NER)

e Hidden Markov Model: Formulation

e Hidden Markov Model: Parameter estimation

® Viterbialgorithm



Hidden Markov Model (HMM) is a probabilistic sequence model: given a sequence of units (words, letters,
morphemes, sentences, whatever), it computes a probability distribution over possible sequences of labels and

chooses the best label sequence.

Can you recall when we mentioned Markov before?
When did we last calculate a probability distribution for some potential sequences?



Components of a (Discrete) Markov chain

Q — {1492 - .- - N ... asetof N states=observations [random variables which can take on values from some set]



Components of a (Discrete) Markov chain (cont.)

Q = (1Q2 . . . N ... aset of N states=observations [random variables which can take on values from some set]

a a o a s e . .
Mz N1l .. atransition probability matrix A, each @;;representing the
N

ani ans ... any| Probability of moving from state 7 to state j, s.t.zaij —1 Vi

J=1



Components of a (Discrete) Markov chain (cont.)

Q = (1Q2 . . . N ... aset of N states=observations [random variables which can take on values from some set]
a a c..oa . - . .
Mz N1l .. atransition probability matrix A, each @;;representing the

N

ani ans ... any| Probability of moving from state 7 to state j, s.t.zaij —1 Vi

j=1
T = T1,72,...,TN .. aninitial probability distribution oyer states

70 - is the probability that the Markov chain will start in state 7 Z m, =1
i=1



Components of a (Discrete) Markov chain (cont.)

Q = (1Q2 . . . N ... aset of N states=observations [random variables which can take on values from some set]

a a o a s e . .
Mz N1l .. atransition probability matrix A, each @;;representing the
N

ani ans ... any| Probability of moving from state 7 to state j, s.t.zaij —1 Vi

j=1
T = T1,72,...,TN .. aninitial probability distribution oyer states

70 - is the probability that the Markov chain will start in state 7 Z m, =1
i=1

Some statesjmay haver; = () meaning that they cannot be initial states

(1st order) Markov assumption: P(Qi — g;|q1 . %—1) — [P(qz. = gj’qi_l)

30



Components of a Hidden Markov Model

Observable vs. hidden events: the former we observe directly, the latter must be inferred
e We see words, and must infer the part-of-speech tags from the word sequence

We build HMM from the same components as the Markov chain and introduce:

... a matrix of emission probabilities, each expressing the
probability of an output observation Oy (drawn from a vocabulary
V' = 1,09, ...,uv) being generated from a hidden state Q;

bll b12 e blV

bxi bva oo by
And we make another assumption besides the Markov assumption:

e Output independence: The probability of an output observation O;depends only on the state that
produced the observation ¢; and not on any other states or any other observation

IP)(OZ"QM «ooyqrT, 01, .. '70T) — IP)(OZ‘Qz>



Toy part of speech example

Transitions Emissions
/\ P(The | Determiner) = 0.5 P(Fed| Noun) = 0.001
C\ /‘) P(A | Determiner) = 0.3 P(raises| Noun) = 0.04
Determinefé— Noun P(An | Determiner) =0.1 P(interest| Noun) = 0.07

P(Fed | Determiner) =0 P(The| Noun) =0

Emission probabilities: Given that
Verb the system is in a certain state,
these are probabilities that it will

) ) emit a certain observation
Each edge here is associated

with a transition probability

Initial
P(Determiner) = 0.9 Initial probabilities: What is the
P(Noun) = 0.08 probability that the sequence starts
P(Verb) = 0.02 in a certain state?

Slide credit: Vivek Srikumar
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Toy part of speech example

Transitions Emissions
P(The | Determiner) =0.5 P(Fed| Noun) = 0.001
/D P(A | Determiner) = 0.3 P(raises| Noun) = 0.04
Determine Noun P(An | Determiner) = 0.1 P(interest| Noun) = 0.07
P(Fed | Determiner) =0 P(The| Noun)=0

start — Determiner
1

Initial

Slide credit: Vivek Srikumar
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Toy part of speech example

Transitions Emissions
P(The | Determiner) = 0.5 P(Fed| Noun) = 0.001
Q P(A | Determiner) = 0.3 P(raises| Noun) = 0.04
Noun P(An | Determiner) = 0.1 P(interest| Noun) = 0.07
P(Fed | Determiner) =0 P(The| Noun) =0

Verb

start —> Determiner

7
A
/
y
.
p

. The
emission

34
Slide credit: Vivek Srikumar



Toy part of speech example

Transitions Emissions
/\ P(The | Determiner) = 0.5 P(Fed| Noun) = 0.001
C\ /D P(A | Determiner) = 0.3 P(raises| Noun) = 0.04
Determinef¢—————— Noun P(An | Determiner) =0.1 P(interest| Noun) = 0.07
P(Fed | Determiner) =0 P(The| Noun)=0
Verb

start —> Determiner —A> Noun

[

The .
transition

Slide credit: Vivek Srikumar
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Toy part of speech example

Transitions Emissions
P(The | Determiner) = 0.5 P(Fed| Noun) = 0.001
/D P(A | Determiner) = 0.3 P(raises| Noun) = 0.04
Determine Noun P(An | Determiner) =0.1 P(interest| Noun) = 0.07
P(Fed | Determiner) =0 P(The| Noun) =0

start —> Determiner — Noun

The /" Fed
emission

Slide credit: Vivek Srikumar
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Toy part of speech example

Transitions Emissions
/\ P(The | Determiner) = 0.5 P(Fed| Noun) = 0.001
C\ f) P(A | Determiner) = 0.3 P(raises| Noun) = 0.04
Determinefé—————— Noun P(An | Determiner) = 0.1 P(interest| Noun) = 0.07
P(Fed | Determiner) =0 P(The| Noun) =0

Verb

start —> Determiner — Noun — Verb

N

The Fed .
transition

Slide credit: Vivek Srikumar

37



HMM Tagger

Wi, W2, ..., WN... asequence of observed words

ti.y = argmax, P(t,...,tx|wr, ..., wy)
Bayes rule to turn to
the process we've P(wy, ..., wxlt1, ... tn)P(t1, ..., tN)
just seen with the  — AT&MaXy P(wy, ..., wy)
toy example ’ ’
The denominator = argmax, P(wy,...,wylti, ..., tx)P(t1, ..., tN)
independent of tags

N N

Markov and output ~ argmax, . | [ P(wslt;) - P(tr) | [ P(tilti-1)
independence e, o
assumptions N N
Let’s use the ~ argmax; . H By, w; Ty H Ati—lati
notation we introduced i=1 i=2

38



HMM Tagger

. a sequence of observed words

[C')nce we have estimated emission,
initial, and transition probabilities}all
we need to do to get the most
probable sequence of tags for a given
sequence of words is to plug the
probabilities into this equation for
every possible sequence of tags and
return the sequence that maximizes

wy,W, ..., WN

ti.y = argmax, P(t,...,tx|wr, ..., wy)
Bayes rule to turn to
the process we've P(wy, ..., wnlty, ... t8)P(t, ..., tN)
just seen with the — arginax, v P(w, wy)
toy example o
The denominator = argmax, P(wy,...,wn|t1,...,t8)P(t1,.
independent of tags

N N

Markov and output ~ argmax, H P(w;|t;) - P(ty) H P(t;|t;_1)
independence i o
assumptions N N
Let’s use the ~ argmax; . H B, w; * Ty H Ati—lati
notation we introduced i=1 i=2

the equation’s value




How to calculater, A, Bfrom observations?

Two possible scenarios:

1. We are given a dataset of sequences labeled with states...

...and we have to learn the parameters of the HMM

* Supervised learning

Z—Weare giverronty g cottection of Sequernces...

...and we have to learn the parameters of the HMM

% Unsupervised learning

L

k Baum—-Welch algorithm: a special case of the expectation—-maximization (EM)

algorithm used to find the unknown parameters of a hidden Markov model (HMM)

Slide based on slides by Vivek Srikumar
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Supervised learning of HMM

The maximum likelihood principle

D = (w (k) t("’))
\a sequence of tags

argmax, 4 g HIP’ w® ¢®)
k=1p N

A argmax, 4 g H H B o T e H At(k)l’t(k:)

2’1
k=1 1=1

7, A, B can be estimated separately by counting using a tagged training corpus

Slide based on slides by Vivek Srikumar
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Supervised learning of HMM
D — (w("“),t("’))le

count(start — t)

Ty —
t D | |
for every possible tag t in the
A, = COHm(t — tl> taggest and word W in the
o count(t) vocabulary
By — count(t — w)

count(t)

Add small constants to the counts to avoid zero probabilities (smoothing)

Slide based on slides by Vivek Srikumar
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How many possible sequences?

The Fed raises interest

Suppose each word allows only the following tags

Determiner Verb Verb Verb
Noun Noun Noun
1 2 2 2

Slide credit: Vivek Srikumar

rates

Verb

Noun

43



How many possible sequences?

The Fed raises interest

Suppose each word allows only the following tags

Determiner Verb Verb Verb
Noun Noun Noun
1 2 2 2

rates

Verb

Noun

In this simple case, 1X2X2X2X2 = 16 possible sequences exist

Slide credit: Vivek Srikumar
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Given an observed sequence, and a model(r, A, B), how to
efficiently calculate the most probable state sequence?

t1,to,...,ty ... asequence of tags
Wy, Wa, ..., WxN -..asequence of observed words
N N
ti.y = argmax, P(t,... tyjwi, ..., wy)~ argmax, H By, w, - T, H Av s

Naive approaches
1. Try out every sequence and return the highest scoring one
O Correct, but slow, O(num-possible-stategsequence-length)
2. Greedy search
o The besttag given the previously chosen tag and observed word
o Incorrect, but fast 0(sequence-length) ¢, = argmtax]?(t | ti1)P(w; | t)

Viterbi algorithm: 0(sequence-length x num-possible-states?) 45



Solution: Use the independence assumptions

t1,t2,...,1N... asequence of tags
wi, W, ..., WH..asequence of observed words
N N
ti.y = argmax, P(ti,... tn|wi, ..., wy) ~ argmax, H By, w, - T, H A 4

i=1 i=2
Take advantage of the first order Markov assumption

The state for any observation is only influenced by the previous state, the next state and the
observation itself

Given the adjacent labels, the others do not matter

Suggests a recursive algorithm

Slide credit: Vivek Srikumar



Slide credit: Vivek Srikumar

Deriving the recursive algorithm

n—1 n
P($17w2a Ty Y1,Y2, 0 yn) - P(yl) H P(yz+l|y2) HP(wilyZ)
i=1 i=1

What we want: An assignment to all
the y;’s that maximizes this product

47



Deriving the recursive algorithm

n—1 n
P(z1,22," * ,Zn,Y1,¥2," " Yn) = E’j(yl) H P(yiv1lys) HP(&U@W%)]
i=1 =1

Y1,Y2,,Y

max n[P(yn|yn—1)F(xn|yn)]'"P(y2|y1) (z2|y2)IP (y1)IP(z1y1)

D G

48



Deriving the recursive algorithm

n—1 n
P(mlam% Ty Y1,Y2, 0 yn) = P(yl) H P(yt-i-l‘yt) HP(wllyl)
=1 =1

max  P(yYn|yn—1)P(zn|yn) - - - P(y2|y1) P(z2|y2) P(y1) P(z1|y1)

Y1,Y2, yYn

Initial probability

49



Deriving the recursive algorithm
Py, 5, = ; &0, U1, 12,7 In) =P(yl)ﬁP(yi+1|yi)ﬁp($z‘\yz‘)

o max  P(yn|yn—1)B(Znln) - - - P(ye|y1 ) B(@2ly2) P (y1 ) B(Z1]yn)

Emission probabilities Initial probability

50



Deriving the recursive algorithm

n—1 n

P(z1,%2,* ;Tn, Y1, Y2, Yn) = P(11) H P(Yit+1lyi) HP($i|yi)

i=1 i=1

max = P(Yn[yn-1)P(zn|yn) - - Py2|ys) P(22|y2) P(y1) P(z1]y1)

Y1,Y2, Y

Transition probabilities Emission probabilities Initial probability

51



Deriving the recursive algorithm

n—1 n

P(1,23, ,%n, Y1, Y2, Yn) = P(w1) [ [ Pwirales) [ [ P(wilys)

|, max P(yn|yn—1)P(xnlyn) - - - P(y2|y1) P(z2|y2) P(y1) P(x1|y1)

Camnl

= max P(yn[yn—1)P(Tnlya) -{ rr;?f;.l’ (y2ly1)P(z2ly2) P(y1) P(z1|y1)

~ L

-

Only a few factors depend on y_1 so we rearrange the
product such that we place all those factors to the right

We can move max_{y_1} to the right too because
other terms do not depend on y_1




Deriving the recursive algorithm

n—1 n
P(z1,@2, 1 Tn, Y1, 02, Un) = Plyr) [ [ Pyisalys) | [ Plailys)
=1 i=1

pomax  Pynlyn—1)P(znlyn) - - Plyelys) P(@2ly2) P(y1) P(21]y1)

= max P(y|yn—1)P(Znlyn) - - -max P(yaly) P(e2|y2) P(y) P(zalya) -

S P(yn|yﬂ—1)P(wn|yn)"'HL?XP(yz\yl)P($2|y2)Score1(y1)<----"'/

Y2, yYn

Abstract away the score for all
decisions till here into score; score; (s) = P(s)P(x1|s)

Abstract away the last two terms into
something that we will give a special

I
I name score_T

S 1s a symbol for any state
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Deriving the recursive algorithm
P(:El,.’L'g,--- ’wnﬂyl’y%"'yn) :P(yl)Tﬁ P(yz+1|yz)ﬁp($z|yz)

pomax  P(ynlyn—1)P(Znlyn) -+ P(y2lys) P(z2]y2) P(y1) P(z1]y1)

= max P(yn|yn—1)P(@n|yn) - - - max Plys|y1) P(z2]y2) P(y1) P(z1]y1)

= max P(yn|yn—1)P(Znlyn) - - -max P(yaly:) P(22lyz)scores (y1)

WP

= max P(Yn|yn—1)P(@nlyn) - -t Igg}c\}P(yalyz)P(:vslys) max P(y2ly1)P(x2|yz)score (y1)

ys, ;]
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Deriving the recursive algorithm
P(x1,T2, " ,Tn,Y1,Y2," " Yn) = P(31) 1:[ P(?Jz'+1|yi)ﬁp($z'|yi)

max  P(yn|yn—1)P(n|yn) - - - P(ya|y1) P(z2|y2) P(y1) P(z1|y1)

Y1,¥2, " yYn
= Jax P(yn|yn—1)P(@nlyn) - - - max P(yalyr) P(z2ly2) P(y1) P(21]y1)
= max P(yn|yn—1)P(@nlyn) - H}Jax P(y2|y1) P (2|yz)score: (y1)
= max P(yn|yn—1)P(znlyn)- rmax}P(yslyz)P(walya)maxP(yzpl)P(wzlyz)scorel(yl)
Y3, \:‘:’If’l f-...‘ ;'
S \
SR \ //
'-.__.-. \ ’
R Y

Only terms that depend on vy,
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Deriving the recursive algorithm

n—1 n
P(1,73, 1@, Y1,¥2, - Yn) = P1) [[ Pwiralys) [| Plilys)
=1 =1
ymax  P(yn|yn—1)P(@nlyn) - - P(y2|ys) P(2y2) P(y1) P(z1]y1)
= max P(yn|yn—1)P(Znlyn) - - max Pyz|y1) P(z2]y2) P(y1) P(21]y1)
= max P(yn|yn—1)P(Tnlyn) - - - max P(yaly1) P(z2]yz)score: (y1)
=y31}13?;n P(yn|yn— 1)P(-'Bn|yn)---maxP(yslyz)P(waly:a)Ig?xP(yzlyl)P(:vzlyz)scorel(yl)
% P(y[n—1) P(ealyn) -+ max P(yslya) P(ws|ys 860K (H8) <

score;(s) ma.xP(s|yz 1)P(z;|s)score; 1 (yi—1)

2489

=l . 67
Abstract away the score for all decisions till here into score




Deriving the recursive algorithm

n—1 n
P(z1,22, * ,Zn,Y1,Y2, " Yn) = P(Y1 H P(yz+1|yz)HP(xi|yi)
i=1 i=1

max  P(yn|Yn—1)P(zn|yn) - - - P(y2|y1)P(x2|y2) P(y1) P(z1|y1)

Y1,Y25 " yYn
= max P(yn|yn— 1)P($n|yn)---H?ngP(yz\yl)P(wzlyz)P(yl)P(mlIyl)

Y2, 3 Yn

= max P(yn|yn—1)P :vnlyn)---ngxP(yﬂyl P(z2|yz)score; (y1)

( ( )
Y2,y Yn
= m Pt |t 1)P(fcn|yn)---myg»xP(y3|yz)P(w3|y3)rr;altxP(yzlyl)P(cvzlyz)Scorel(y1)
= max P(yn|yn—1)P(znlys) - - maxP(ys(yz)P(zs|ys)scorez(y2)

q(‘ore@( ) = max P(s|y;—1)P(z;|s)score;_1(y;—1)
Yi—1

= . 6
Abstract away the score for all decisions till here into score .
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Deriving the recursive algorithm

n—1 n
P($1a$23 Ty Y1, Y2, 0 y'n) = P(yl) ]___[ P(y'l.—l-l'y%) ]:[P($1.|y’i.)
=1 i=1

max P(Yn|tn—1)P(Zn|yn) - - P(y2|y1)P(ar_2|y2)P(y1)P(m_1|y1)

Y1,Y2, " 3y Yn
= max P(yn|yn—1)P(@n[yn) - - max P(yaly1) P(z2]y2) P(y1) P(21]y1)
= maX P(yn|yn—1)P(Tn|yn)- - max P(yaly1) P(x2|yz)score: (y1)
= max Plyn|yn—1)P(@n|yn) - - - max P(ys|y2) P(zs]ys) max P(ys|y ) P(zz|y2)scorer (y1)
= max P(yn|yn—1)P(@n|yn) - --max P(ys|yz) P(zs]ys)scores(yz)
= max score, (yn)
Yn

Abstract away the score for all decisions till here into score
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Deriving the recursive algorithm

n—1 n

P(Z1,Z2, 1 TnyY1,Y2, " " Yn) = P(y1) H P(%‘+1|%)HP($7;|%‘)

=1 =1

scorey (s) = P(s)P(x1]|s)

score;(s) = max P(s|y;—1)P(x;|s)score;—1(yi—1)
Yi-1
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Viterbi algorithm

Max-product algorithm for first order sequences

1. |Initial: For each state s, calculate
score,(s) = P(s)P(x{ | s)

2. Recurrence: Fori= 2 to n, for every state s, calculate

score;(s) = r;laxP(s | yi—1)P(x; | s)score;_1(yi—1)
i-1

3. At the final state: calculate

maxP(y,x | m, A, B) = max score,(s)
Yi-1 S
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Viterbi algorithm

Max-product algorithm for first order sequences

A: Transitions

m: Initial probabilitie
B: Emissions

1

1. Initial: For each state s, calculate
score (s) = P(s)P(x1 | s) = mgBy, ¢

2. Recurrence: Fori=2to n, for every state s, calculate
scorei(s) = maxP(s | y;—1 )P(x; | s )score;—1(¥i-1)

= rjl;l_ax Ay, | Bsx;scorei_q(yi-1) ]
=1

3. At the final state: calculate

max P(y,x | m, A, B) = max score,(s)
Yi-1 S
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t: Initial probabilities

Vlterb| algorithm A: Transitions

Max-product algorithm for first order sequences B: Emissions

1. Initial: For each state s, calculate
score;(s) = P(s)P(xy | s) = mgBy, s

2. Recurrence:|Fori= 2 to n,|for every state s calculate
scorei(s) = maxP(s | ¥;—1 )P(x; | s)score;_1(¥i-1)

= r)r]}ax Vi-1s Bs.xiscorei—l (yi—l)
i—1

'Runtime ]

. _complexity:
3. At the final state: calculate

>
3 O(sequence length x
max Py, % | m A, B) = maxseore, () #possible states’2) ]

This only calculates the max. To get final answer (argmax):
* keep track of which state corresponds to the max at each step
* build the answer using these back pointers 73 62



From sequence labeling to syntactic parsing

Syntax: The set of principles under which sequences of words are judged to be grammatically acceptable

e We've already learned one of the most basic syntactic concepts: the syntactic role of each word
Turning to thinking about word/phrase order

Grammar (informally) is the broader term that encompasses all implicit rules by which speakers intuitively judge
which strings are well-formed and what they mean; including syntax, morphology, phonetics (sounds), semantics, and

sometimes pragmatics (contextual use of language)

e Different from a grammar formalism that provides a set of mathematical rules or algorithms that can be used
to generate the syntactic structures of a language

Syntactic parsing: The task of assigning a syntactic structure to a sequence of text

e Different theories of grammar propose different formalisms for describing the syntactic structure of sentences:
= constituency grammars & dependency grammars



Why do we care?

Getting the right interpretations of words:

e  Visiting relatives can be annoying.
e  Visiting relatives can be annoying.

Gateway to thinking about recognizing who is doing what to whom:

® The cat chased the dog.

Machine translation from subject-verb-object (SVO) languages like English to verb-subject-object
(VSO) Ianguages like Welsh (https://en.wikipedia.org/wiki/Verb%E 29680%g3subject%E 2%80%g30bject_word_order]

Grammar checking: Sentences that cannot be parsed may have grammatical errors (or at least be
hard to read)

Always useful for chunking text into phrases


https://en.wikipedia.org/wiki/Verb%E2%80%93subject%E2%80%93object_word_order

Constituency parsing: Intro

Constituency parsing is a method that breaks a sentence down into its
constituent parts

Constituents are words or groups of words that function as a single unit
within a hierarchical structure

e Sentence, Noun Phrase, Verb Phrase, Prepositional Phrases
e Bottom layers in POS tags

Constituents are represented in a parse tree

e Nota binary tree
e Right branching in English

Constituency makes sense for a lot of languages but not all, e.g., those
where the word order is free such as Latin

the building



What's hard about constituency parsing?

Structural ambiguity: When the grammar can assign more than one parse to a sentence

PP attachment ambiguity:
® The children ate the cake with a spoon.
® (S(NP (DetThe) (N children)) (VP (V ate) (NP (Det the) (N cake)) (PP (P with) (NP (Det a) (N spoon)))))

® (S(NP (DetThe) (N children)) (VP (V ate) (NP (Det the) (N cake) (PP (P with) (NP (Det a) (N spoon))))))
O  Same parse as “The children ate the cake with some icing”

Modifier scope
e Plastic cup holder
e (NP (AdjPlastic) (N (N Cup) (N Holder)))
o (NP (N (NP (Adj Plastic) (N Cup)) (N Holder)))
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What's hard about constituency parsing? Cont.

Structural ambiguity: When the grammar can assign more than one parse to a sentence

Complement structure:
® The students complained to the professor that they didn’t understand.
e (S
(NP (Det The) (N students))
(VP (V complained)
(PP (P to) (NP (Det the) (N professor)))
(SBAR (WHNP that) (S (NP they) (VP (V didn't) (VP understand))))))
e (S
(NP (Det The) (N students))
(VP (V complained)
(PP (P to)
(NP (Det the) (N professor)
(SBAR (WHNP that) (S (NP they) (VP (V didn't) (VP understand))))))))



What's hard about constituency parsing? Cont.

Structural ambiguity: When the grammar can assign more than one parse to a sentence

Coordination scope:
e /saw the man with a telescope and a hat.

e (S
(NP (1)
(VP (V saw) ® (S
(NP (Det the) (N man) (NP (D)
(PP (P with) (VP (Vsaw)
(NP (NP (Det a) (N telescope)) (NP (NP (Det the) (N man)
(CCand) (PP (P with)
(NP (Deta) (N hat))))))) (NP (Deta) (N telescope))))
(CC and)

(NP (Det a) (N hat)))))
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Let’s parse!

Given a sentence, how do we find the highest scoring parse tree for it?

We'll apply the CKY algorithm to Probabilistic Context-Free Grammars
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Goals of Next Lecture

Learn how to produce a constituency parse using an non-neural algorithm

Intro

Context-Free Grammars (CFGs)
Probabilistic CFGs

CKY Algorithm

<o o Lo Ko Ko

Evaluation
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