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Logistics

* Homework 3 is now due tonight.
* Use all your late/slip days if you need now.
* No late days for final project deadlines.
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P ip e ]jne NAME COMPONENT CREATES DESCRIPTION
tokenizer Tokenizer = Doc Segment text into
tokens.
processing
pipeline
tagger Tagger = Token.tag Assign part-of-
speech tags.
parser DependencyParser =  Token.head, Token.dep, Assign dependency
Doc.sents, labels.
Doc.noun_chunks
ner EntityRecognizer = Doc.ents, Detect and label
Token.ent_iob , named entities.
Token.ent_type
lemmatizer Lemmatizer = Token.lemma Assign base forms.
textcat TextCategorizer = Doc.cats Assign document
labels.
custom custom components Doc._.XXX , Assign custom

Source: https://spacy.io/usage/processing-pipelines

Token._.xxx,
Span. _.Xxxx

attributes, methods
or properties.

spaCy


https://spacy.io/usage/processing-pipelines

Constituency parsing: Intro

Constituency parsing is a method that breaks a sentence down into its
constituent parts

Constituents are words or groups of words that function as a single unit
within a hierarchical structure

e Sentence, Noun Phrase, Verb Phrase, Prepositional Phrases
e Bottom layers in POS tags

Constituents are represented in a parse tree

e Nota binary tree
e Right branching in English

Constituency makes sense for a lot of languages but not all, e.g., those
where the word order is free such as Latin

the building



Overview

Learn how to produce a constituency parse using an non-neural algorithm
® Context-Free Grammars (CFGs)
® Probabilistic CFGs
e CKY Algorithm
e Evaluation

Dependency Parsing (if time)

Semantics and Discourse (if time)



Definition P

NP VP
Context-free grammars (CFGs) are tuples (N, %, R, S) consisting of: Pl:%P VBZ PP
e A finite set of non-terminals N She rzln IN/\NP
— S, NP, VP, PP, ... , POS tags (pre-terminals) tlo DT/\NN
e A finite alphabet/lexicon ¥ of terminal symbols tl'le builliing

— Words

e A set of productions or rules R, each of the form A — 3, where A € N (so, a non-terminal) and 3
is a sequence of symbols in ¥ U N (so, a sequence of terminals or non-terminals)

— NP — ProperNoun

e A designated start S




CFG: Toy example

Non-terminals, N = {S, NP, VP, DET, N, V}

Terminals, > = {"the”, “a”, “cat”, “"doqg”, “sleeps”, “eats"}
I I I 1 1

I

or
Productions/rules, R = {S — NP VP NP — Det N, VP —V NP[I[V, Det — “the” | “a"}, N — “cat” |
“dog”,V — “sleeps” | “eats"}  binary rules

unary rules
Start symbol, S =S (Sentence)

With this CFG, we can generate simple sentences like: "The cat sleeps”

Start with S

Replace S with NP VP (S — NP VP)
Replace NP with Det N (NP — Det N)
Replace Det with “the” (Det — “the”")
Replace N with “cat” (N — “cat”)
Replace VP withV (VP — V)

Replace V with “sleeps” (V — “sleeps”)

N oupwNE



A few more good-to-know terms

Derivation: A sequence of steps from the start symbol S to a surface string of non-terminals, which
is the yield of the derivation

A string is in a context-free language if there is some derivation from S yielding this string

Parsing: The problem of finding a derivation for a string in a grammar



Informally...

Probabilistic context-free grammars (PCFGs) are CFGs, but rules have probabilities that represent
the likelihood of a particular production being used in the derivation of a sentence; by now we know
that probabilities can be estimated from data and this helps with ambiguities

S — NPVP p=1.0
NP — Det N p=1.0
VP —V NP p=0.2
VP -V p=0.8
Det — “the” pP=0.4
Det — “a” p=0.6
N — “cat” P=0.45
N — “dog” p=0.55
V — “sleeps” p=0.7

V — “eats” p=0.3



Informally...

The probabilities for all rules expanding the same non-terminal [the left-hand side, LHS] should sum

toa

S— NPVP
NP — Det N
VP —-V NP
VP -V

Det — “the”
Det — "a”

N — “cat”

N — “dog”
V — “sleeps”
V — “eats”

p=1.0
p=1.0

0.8 S P(rn) =1

Foralln in N:

Ezgg re€R s.t. n=LHS(r)

p=0.45

p=0.55 P(tree) = ]|  P(|LHS(r))
p=0.7 r in derivation

p=0.3
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How to estimate these probabilities?

Supervised approach

Treebanks: Corpora that have been annotated with syntactic structure

Penn Treebank project, which includes various treebanks in English, Arabic, and Chinese

As with HMM, the probabilities that maximize the likelihood of data can be estimated by
counting and normalizing:

For each non-terminal, divide the frequency of each rule that terminal is the left-hand side of
by the total number of occurrences of that non-terminal’s expansions

P(S— NPVP)=100/150=2/3

P(S—VP)=50/150=1/3

Smoothing


https://catalog.ldc.upenn.edu/docs/LDC95T7/cl93.html

Let’s parse!

Given a sentence, how do we find the highest scoring parse tree for it?

We'll apply the CKY algorithm to Probabilistic Context-Free Grammars

12



CKY (Cocke-Kasami-Younger) algorithm

A bottom-up parser:

e Starts by recognizing the smallest components (like individual words) and gradually builds up
to larger structures (like phrases or entire sentences)

Dynamic programming to parse efficiently:

e Once asubstring is analyzed and its possible derivations are stored, these results are reused
whenever that substring is part of a larger segment being analyzed

Ambiguity handling:

e CKY allows multiple entries for each substring in the table where it stores intermediate
results, reflecting the different possible derivations
e Finds the most likely parse when applied to PCFGs



CKY Step 1: Convert the PCFG to Chomsky Normal Form (CNF)

Also known as binarization

In CNF, the right-hand side of every production includes either two non-terminals, or a single
terminal symbol

The CKY algorithm we present applies to a restricted type of PCFG: a PCFG where which isin
Chomsky normal form (CNF)

e Turns out this is not a very strong assumption
e We won't go into details but there are ways to remove all unary rules and transform n-ary rules



CKY Step 2: Initialize the parsing table

Create a triangular matrix/table where the rows and columns correspond to the words in the sentence

Eachcell (i, j), i<7, represents the substring from the i-th to j-th word, so we start counting columns by
1 and rows from o cells

Each cell in the matrix will store the most probable non-terminal(s) that can generate the corresponding
substring of the sentence, along with the probability of the most likely derivation

S — NP VP (0.9) .
S — VP (0.1) she eats fish
x:z —>x E\IP ()0.5)
— 0.
H:Z _)::?hﬁi 0.0 she (0,1) (0,2) (0,3)
Vs enter 1y, eats (12) | (1,3)
fish (2,3)




CKY Step 3: Populate the parsing table

Fill in the diagonal of the matrix with the non-terminal(s) that can produce that word, along with the
probability of that production

she eats fish

S — NPVP (0.9)
S — VP (0.1) she NP
VP —V NP (0.5) (0.5)
VP —V (0.5)

NP — “she” (0.5)

NP — “fish” (0.5) eats V
V — “eats” (1.0)
(1.0)

fish




CKY Step 3: Populate the parsing table
(continued)

Populate the rest of the table a column at a time working from left to right, with each column filled
from bottom to top

A bottom-up fashion so that at the point where we are filling any cell, the cells containing the parts that could
contribute to this entry [the cells to the left and the cells below] have already been filled

Foreach cell (i, 7), 1<7, representing the substring from the i-th to j-th word, compute the most
probable non-terminals that can generate this string:

Split the substring into two parts at every possible point k, where 1<k<]j

Check every pair of non-terminals (B, C) inthecells (1, k)and (k, j)

For each pair (B, C), look forarule A -> BC and calculate the probability of this rule multiplied by the
probabilities storied in (i, k)and (k, j)

Keep the max. probability and the corresponding non-terminal Aincell (1, j)



CKY Step 3: Populate the parsing table
(continued)

Foreachcell (i,7),1i<]j, representingthe

substring from the i-th to j-th word:

Split the substring into two parts at every
possible point k, where 1<k<]j

Check every pair of non-terminals (B, C)
inthecells (i, k)and (k, j)

For each pair (B, C), look forarule A ->
BC and calculate the probability of this
rule multiplied by the probabilities storied
in(i,k)and (k, j)

Keep the max. probability and the
corresponding non-terminal A along with
the split point k incell (1, 7)

Non-termin als: NP, V

Rule with NP V on RHS?

S — NP VP (0.9)
S — VP (0.1)

VP — VNP (0.5)
VP — V (0.5)

NP — “she”(0.5)
NP — “fish”(0.5)
V — “eats”(1.0)

(1,k)=
(6,1)
sh:e/\\‘ cats fish
she NP (0.5) | (0,2),k=
1 (k,j)=
— (1,2)
cats V (1.0)
fish
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CKY Step 3: Populate the parsing table
(continued)

Foreachcell (i, 7),1i<j, representingthe

substring from the i-th to j-th word:

Split the substring into two parts at every
possible point k, where i<k<]j

Check every pair of non-terminals (B, C)
inthecells (i, k)and (k, j)

For each pair (B, C), look forarule A ->
BC and calculate the probability of this
rule multiplied by the probabilities storied
in(i,k)and (k,7j)

Keep the max. probability and the
corresponding non-terminal A along with
the split point k incell (i, j)

Non-termin als: NP, V

Rule with NP V on RHS?

S — NP VP (0.9)
S — VP (0.1)

VP — VNP (0.5)
VP — V (0.5)

NP — “she”(0.5)
NP — “fish”(0.5)
V — “eats”(1.0)

None!
she eats fish
she NP (0.5) @
cats V (1.0)
fish
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CKY Step 3: Populate the parsing table
(continued)

Foreachcell (i, 7),i<]j, representingthe

substring from the i-th to j-th word:

Split the substring into two parts at every
possible point k, where 1<k<]j

Check every pair of non-terminals (B, C)
inthecells (1, k)and (k, j)

For each pair (B, C), look forarule A ->
BC and calculate the probability of this
rule multiplied by the probabilities storied
in(i,k)and (k,j)

Keep the max. probability and the
corresponding non-terminal A along with
the split point k incell (1, 7)

Non-terminals: V, NP
Rule with V NP on RHS?

S — NP VP (0.9)
S — VP (0.1)

VP — VNP (0.5)
VP — V (0.5)

NP — “she”(0.5)
NP — “fish”(0.5)
V — “eats”(1.0)

she eats fish
(i,k)=
she NP (0.5) g (.2
<IN
eats V (1.0) (1,3),k7)

fish




CKY Step 3: Populate the parsing table  s-wv oo

S — VP (0.1)

(continued) VP — VNP (0.5)

VP — V (0.5)
Foreachcell (i,7j),1<j, representingthe NP — *she”(0.5)
substring from the i-th to j-th word: NP — “fish”(0.5)
V — “eats” (1.0
° Split.the substring into two parts at every NP VP7 YeS! cats”(1.0)
D et o o torminals (8. P(VP =V NP) . P(V — eats) - P(NP — fish) = 0.5 1.0 0.5 = 0.25

e  Check every pair of non-terminals

inthecells (1, k)and (k, J)

e Foreachpair (B,C), lookforarule A ->
BC and calculate the probability of this she cafts fish

rule multiplied by the probabilities storied
in(i,k)and (k,7j)

e Keep the max. probability and the she NP (05) ﬂ
corresponding non-terminal A along with
the split point k incell (1, j)

eats V(1.0) |VP (0.25)

fish
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CKY Step 3: Populate the parsing table
(continued)

Foreachcell (i, 7),i<j, representingthe

substring from the i-th to j-th word:

Split the substring into two parts at every
possible point k, where 1<k<]j

Check every pair of non-terminals (B, C)
inthecells (i, k)and (k, j)

For each pair (B, C), look forarule A ->
BC and calculate the probability of this
rule multiplied by the probabilities storied
in(i,k)and (k,Jj)

Keep the max. probability and the
corresponding non-terminal A along with
the split point k incell (1, 7)

Non-terminals NP VP
Rule with NP VP on RHS?

S — NP VP (0.9)
S — VP (0.1)

VP — VNP (0.5)
VP — V (0.5)

NP — “she”(0.5)
NP — “fish”(0.5)
V — “eats”(1.0)

she //ea-th\ﬁsh
she NP (0.5) Y (0,3), lT1
, 2
eats V(1.0) |VP (0.25)
fish
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Foreachcell (1, J),i<j, representingthe

substring from the 1-th to j-th word:

Split the substring into two parts at every
possible point k, where 1<k<j

Check every pair of non-terminals (B, C)
inthecells (1, k)and (k, j)

For each pair (B, C), lookforarule A ->
BC and calculate the probability of this
rule multiplied by the probabilities storied
in(i,k)and (k,J)

Keep the max. probability and the
corresponding non-terminal A along with
the split pointk incell (1, 7)

CKY Step 3: Populate the parsing table
(continued)

S — NP VP (0.9)
S — VP (0.1)

VP — VNP (0.5)
VP — V (0.5)

NP — “she”(0.5)
NP — “fish”(0.5)
V — “eats”(1.0)

she cats fish

NP (0.5) S
she 0 (0.1125)
eats V(1.0) | VP (0.5)
fish NP (0.5)
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CKY Step 3: Populate the parsing table
(continued)

Foreachcell (i, j), i<j, representingthe

substring from the 1-th to j-th word:

Split the substring into two parts at every
possible point k, where 1<k<j

Check every pair of non-terminals (B, C)
inthecells (1, k)and (k, j)

For each pair (B, C), look forarule A ->
BC and calculate the probability of this
rule multiplied by the probabilities storied
in(i,k)and (k,J)

Keep the max. probability and the
corresponding non-terminal A along with
the split point k incell (1, j)

Non-terminals NP VP
Rule with NP VP on RHS?

S — NP VP (0.9)
S — VP (0.1)

VP — VNP (0.5)
VP — V (0.5)

NP — “she”(0.5)
NP — “fish”(0.5)
V — “eats”(1.0)

she //ea-th\ﬁsh
she NP (0.5) Y (0,3), lT1
, 2
eats V(1.0) |VP (0.25)
fish




CKY Step 3: Populate the parsing table  s—wve o9

S — VP (0.1)

(continued) VP — VNP (0.5)
_ VP — V (0.5)

Foreachcell (i, j), i<7j, representingthe Non-terminals: NP NP — “she”(0.5)

substring from the i-th to j-th word: Rules with NP on NP — “fish”(0.5)

RHS? V — “eats”(1.0)

e Splitthe substring into two parts at every
possible point k, where i<k<]j

e Checkevery pair of non-terminals (B, C)
inthe cells (1, k)and (k,3) she eats fish

e Foreachpair (B,C), lookforarule A ->

BC and calculate the probability of this
rule multiplied by the probabilities storied she NP (O . 5) @ S

in (i,k)and (K, J) «“(0.112

e Keepthe max. probability and the

corresponding non-terminal A along with ( 0,3 ) ) k:‘}\
the split point k incell (1, 7) 2
14
eats V(1.0) | VP (0.5)

fish NP (0.5)26




CKY Step 3: Populate the parsing table
(continued)

Foreachcell (i, 7),i<j, representingthe

substring from the i-th to j-th word:

Split the substring into two parts at every
possible point k, where 1<k<]j

Check every pair of non-terminals (B, C)
inthecells (i, k)and (k, j)

For each pair (B, C), look forarule A ->
BC and calculate the probability of this
rule multiplied by the probabilities storied
in(i,k)and (k, j)

Keep the max. probability and the
corresponding non-terminal A along with
the split point k incell (1, 7)

S — NP VP (0.9)
S — VP (0.1)

VP — VNP (0.5)
VP — V (0.5)

NP — “she”(0.5)
NP — “fish”(0.5)
V — “eats”(1.0)

she cats fish

NP (0.5) S
she 0 (0.1125)
eats V(1.0) | VP (0.5)
fish NP (0.5)
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CKY Step 3: Populate the parsing table

(continued)

Foreachcell (1, j),i<j, representingthe

substring from the i-th to j-th word:

Split the substring into two parts at every
possible point k, where 1<k<]j

Check every pair of non-terminals (B, C)
inthecells (1, k)and (k, j)

For each pair (B, C), look forarule A ->
BC and calculate the probability of this
rule multiplied by the probabilities storied
in(i,k)and (k,Jj)

Keep the max. probability and the
corresponding non-terminal A along with
the split point k incell (1, 7)

S — NP VP (0.9)

S — VP (0.1)
VP — VNP (0.5)
(S VP — V (0.5)
NP — “she” (0.5)
%\I\IIII; he) NP — “fish”(0.5)
(V eats) V — “eats”(1.0)
))(NP fish)
she //eafr\\ﬁsh
NP (0.5) S
she ? (@.1125i§
eats‘\\\//v (IhQ) | VP (0. 2?)
fish T—— T NP (0.5)

208




Constituency parsing: Evaluation

Given a treebank: How much the constituents in the hypothesis parse tree look like the
constituents in a hand-labeled, reference parse?

A constituent in a hypothesis parse of a sentence s is labeled correct if there is a constituent in the
reference parse with the same starting point, ending point, and non-terminal symbol.

# of correct constituents in hypothesis parse of s
# of total constituents in reference parse of s

labeled recall: =

# of correct constituents in hypothesis parse of s
# of total constituents in hypothesis parse of s

labeled precision: =

As always, calculate Fa!



CKY: Bottom-up parser

S — NP VP (0.9)
S — VP (0.1)

VP — V NP (0.5)
VP — V (0.5)

NP — “she”(0.5)
NP — “fish”(0.5)
V — “eats”(1.0)

she//ea’ts\\fish
NP (0.5) S
she (8.1125))
] cats™(_| v |w (@.25)'
(o] fish T T NP (05)
oU

Source: https://corenlp.run/ (not using the CKY and the same grammar!)



https://corenlp.run/

UsespaCy

Constituency Parsing with a Self-Attentive Encoder

Berkeley Neural Parser

Constituency Parsing with a Self-Attentive Encoder (ACL 2018)

Ostars 873 Output . (VP(VBD fled) (NP (DT the) (NN market))..

— ( D
INSTALLATION

A Python implementation of the parsers described in “Constituency Parsing with a Self-

Attentive Encoder” from ACL 2018. pip install benepar DeCOder

EXAMPLE

import benepar, spacy

nlp = spacy.load('en_core_web_md') f )
nlp.add_pipe('benepar', config={'model': 'benepar_en3'}) o o
doc = nlp('The time for action is now. It is never too late to do something.')
sent = list(doc.sents)[0] Encoder
sent._.parse_string)
(NP (NP (DT The) (NN time)) (PP (IN for) (NP (NN action)))) (VP (VBZ is) ( -
nt(sent._.labels) L -
J
T T T T T
nt(list(sent._.children)[0]) and fled the market in
time for Il’lput o cc VBD DT NN IN o

https://spacy.io/universe/project/self-attentive-parser



https://aclanthology.org/P18-1249/
https://spacy.io/universe/project/self-attentive-parser

Dependency grammars

Constituency formalism based on phrasal constituents and phrase-structure rules

In dependency formalism: The syntactic structure of a sentence is described solely in terms of
directed binary grammatical relations between the words

Figure source: Vivek Srikumar



Dependency grammars

Constituency formalism based on phrasal constituents and phrase-structure rules

In dependency formalism: The syntactic structure of a sentence is described solely in terms of
directed binary grammatical relations between the words

The tabby cat scratched the couch

Dependency arcs go from the head word to its dependents

Head: (informally) the central organizing word

. e 33
Figure source: Vivek Srikumar Dependent: (informally) modifier



Dependency grammars

Constituency formalism based on phrasal constituents and phrase-structure rules

In dependency formalism: The syntactic structure of a sentence is described solely in terms of
directed binary grammatical relations between the words

subj
The tabby cat scratched the couch

Dependency arcs are labeled with grammatical relations such as subject,

object, noun modifier, determiner, etc.
The label describes what grammatical function the dependent plays with

respect to the head
34

Figure source: Vivek Srikumar



Dependency grammars

Constituency formalism based on phrasal constituents and phrase-structure rules

In dependency formalism: The syntactic structure of a sentence is described solely in terms of
directed binary grammatical relations between the words

subj

The tabby cat scratched the couch

Every word in a sentence should be covered by the tree

35
Figure source: Vivek Srikumar



Dependency grammars

Constituency formalism based on phrasal constituents and phrase-structure rules

In dependency formalism: The syntactic structure of a sentence is described solely in terms of
directed binary grammatical relations between the words

root

det \ obj
/ amod V subj /d\

The tabby cat scratched the couch

A root node explicitly marks the root of the tree

36
Figure source: Vivek Srikumar



Dependency vs. constituency

the arguments

Not illustrated here:
Dependencies handle languages that
have free word order more elegantly

to the verb are S

directly linked

/

to it NP VP
no nodes ‘ /\
Corresponding the morning Denver Pro Verb
to phrasal /\
constituents e.@ Det
(NPs, VPs, ...) | /\
through the Nom
the arguments’s /\ /\
connection Nom Noun
to the main verb is | ‘ | ]
more distant Noun through Pro
morning Der’tver

Figure source: Jurafsky & Martin

|3f LAY Dependency and constituent analyses for I prefer the morning flight through Denver.
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Dependency Formalisms

G = (V, A) ... a directed graph representing a dependency structure
V4 ... a set of vertices (words, but also punctuation & sometimes stems and affixes)

A ... a set of labeled arcs (ordered pairs of vertices)

A dependency tree is a directed graph that satisfies the following constraints:
1. There is a single designated root node that has no incoming arcs
2. With the exception ofthe root node, each vertex has exactly one incoming arc
3. There is a unique path from the root node to each vertex in V

Each word has a single head, the dependency structure is connected, and there is a single root
node from which one can follow a unique directed path to each of the words in the sentence.



Projectivity

An arc from a head to a dependent is said to be projective if there is a path from the head to every
word that lies between the head and the dependent in the sentence

A dependency tree is then said to be projective if all the arcs that make it up are projective.

e No dependency arcs cross when the words are laid out in their linear order, with all arcs above the words

There are many valid constructions which lead to non-projective trees:

|

JetBlue canceled our

flight this morning which was already late



Projectivity (cont.)

Concerns:

e |If adependency treebank is automatically derived from phrase-structure treebanks through
the use of head-finding rules, it will be incorrect when non-projective examples like previous

one are encountered
e Computational limitations to the most widely used families of parsing algorithms



The Universal Dependencies (UD) project

[de Marneffe et al., 2021]; https://universaldependencies.org/

An open community effort to annotate
dependencies across more than 100 languages,
provides an inventory of 37 dependency relations
and 200+ treebanks

"The general philosophy is to provide a universal inventory
of categories and guidelines to facilitate consistent
annotation of similar constructions across languages,
while allowing language-specific extensions when
necessary.”

— —~—

The dog was chased by the

punct
obl
nsubj:pass case
d“a“*“’a“ VERB PUNCT
—— —_——— —— ~
cat .

punct

nsubj:pass obl!
o PO\ PUNCT
— —— — = —_—— A

Kyyeto ce npecneggaile ot KoTkata

nsubj:pass punct:

H bl
awPass\versTY °°"[NouN ] [PUNCT)
—— —— — —_— ~
Pes byl honén kockou {
punct

. obl
[NOUNT "% veRS
—_—— — —_— ~
Hunden jagades av katten

FYI McDonald et al. “Universal Dependency Annotation for Multilingual Parsing” won the test-of-time award at ACL 2023!
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https://aclanthology.org/2021.cl-2.11/
https://universaldependencies.org/

analysis of the . .
individual Morphological Lexical
components of
words like prefixes
and suffixes

syntactic structure
like a constituency Semantic
or dependency
parse tree

Discourse —> Pragmatic

Figure source: https://www.datascienceprophet.com/different-levels-of-natural-language-processing/

identifying and
analyzing the
structure of words
and parts of speech

meaning of words
(lexical semantics)
but also entire
expressions
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https://www.datascienceprophet.com/different-levels-of-natural-language-processing/

Semantics

The study of linguistic meaning. It examines what meaning is, how words get their meaning, and
how the meaning of a complex expression depends on its parts.

Reminder: Lexical semantics

Source: Wiki


https://en.wikipedia.org/wiki/Semantics

Sense

The sense of an expression is the idea, concept, or mental representation associated with it

¢ It's about how we understand the meaning of the expression, independent of any specific
context or object
¢  Example: Think about the word “cat”
- The sense includes the idea of a small, furry, domesticated animal that purrs, has claws,
and so on
- This is the concept of a cat, which is stored in your mind

Source: Wiki


https://en.wikipedia.org/wiki/Semantics

Reference

The reference of an expression is the actual object or entity in the real world that the expression
refers to or points to in a specific context

¢ Example: If you say, "My cat is sleeping” the reference is your actual, specific cat.

Another person’s “cat” would have a different reference, even though the sense of the word is
shared

Source: Wiki


https://en.wikipedia.org/wiki/Semantics

Semantic Parsing

Semantic parsing:

The task of converting a natural language utterance to a logical
form or a program: a machine-understandable representation
of its meaning

Sentence

Meaning representations: [ Semantic Parser)

Formal structures that capture the "complete” meaning of \ 4
linguistic expressions Meaning Representation

What's complete? Debatable v
[ Executor ]

Response

[ACL 2018 tutorial on neural semantic parsing]



https://github.com/allenai/acl2018-semantic-parsing-tutorial

Semantic Parsing: QA

How many people live in Seattle?

¥

[ Semantic Parser ]

SELECT Population FROM CityData
where City=="Seattle”;

4

Executor g?a

[Wong & Mooney 2007], = —
[Zettlemoyer & Collins 2005, 2007], ‘
[Kwiatkowski et.al 2010, 201 1], 620,778

[Liang et.al. 201 I],[Berant et.al.
2013,2014],[Reddy et.al, 2014,2016],
[Dong and Lapata, 2016] .....

[ACL 2018 tutorial on neural semantic parsing]
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https://github.com/allenai/acl2018-semantic-parsing-tutorial

Semantic Parsing: Instructions

Go to the third junction and take a left

‘ (do-seg(do-n-times 3
(move-to forward-loc
Semantic " (do-until
Parser (Junction current-loc
(move-to forward-loc))))
(turn-right))

:

_ 1
[Chen & Mooney 201 1]
[Matuszek et al 2012] |
[Artzi & Zettlemoyer 201 3] l | l I l
[Mei et.al. 2015][Andreas et al, 2015]

[Fried at al, 2018] ....
[ACL 2018 tutorial on neural semantic parsing]
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https://github.com/allenai/acl2018-semantic-parsing-tutorial

Unlike syntax, where there are standard formalisms (e.g. UD, etc), there are no standard semantic
formalisms

Semantics itself is not well defined because we have the following:

Usually, predicate logic is used as the representation of choice

Some (very restrictive) work involves quantified (i.e. first order) logic

Some representations involve graphs (e.g. AMR)

Some people argue that semantics should be represented by text (e.g. QA-SRL)
It is usually English-specific


https://en.wikipedia.org/wiki/Abstract_Meaning_Representation
https://qasrl.org/

Semantic roles

For an event that is described in a verb, different noun phrases
fulfill different semantic roles

Think of noun phrases as representing typed arguments

Slides by Vivek Srikumar



Semantic roles

For an event that is described in a verb, different noun phrases
fulfill different semantic roles

Think of noun phrases as representing typed arguments

John saw Mary eat the apple
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Semantic roles
For an event that is described in a verb, different noun phrases
fulfill different semantic roles

Think of noun phrases as representing typed arguments

The seeing event

John saw Mary eat the apple
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Semantic roles

For an event that is described in a verb, different noun phrases
fulfill different semantic roles

Think of noun phrases as representing typed arguments

The seeing event

John saw Mary eat the apple

Which entity is What is being
performing the seen?
“seeing” action?

(i.e. initiating it)

Slides by Vivek Srikumar



Semantic roles

For an event that is described in a verb, different noun phrases
fulfill different semantic roles

Think of noun phrases as representing typed arguments

The eating event

John saw Mary eat the apple
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Semantic roles

For an event that is described in a verb, different noun phrases
fulfill different semantic roles

Think of noun phrases as representing typed arguments

The eating event

John saw Mary eat the apple

Which entity is  What is being
performing the eaten?
“eating”?

Slides by Vivek Srikumar



Semantic role labeling

Loosely speaking, the task of identifying who does what to
whom, when where and why
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Semantic role labeling

Loosely speaking, the task of identifying who does what to
whom, when where and why

Input: A sentence and a verb

Output: A list of labeled spans
— Spansrepresent the arguments that participate in the event
— The labels represent the semantic role of each argument

— Optionallv. also label the verb with a frame tvpe that describes the
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Semantic role labeling

Loosely speaking, the task of identifying who does what to
whom, when where and why

Variants exist, but for
simplicity we will use this
setting

Input: A sentence and a verb

Output: A list of labeled spans
— Spansrepresent the arguments that participate in the event
— The labels represent the semantic role of each argument

— Optionallv. also label the verb with a frame tvpe that describes the

Slides by Vivek Srikumar



What is the set of labels?

We want the labels to be participants in event frames
— That is, the semantic arguments of events

Coming up with a closed set of labels can be daunting
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What is the set of labels?

We want the labels to be participants in event frames
— That is, the semantic arguments of events

Coming up with a closed set of labels can be daunting

Some examples:

Semantic role

Description

Example

Agent

The entity who initiates an
event

John cut an apple with a
knife

Patient

The entity who undergoes a
change of state

John cut an apple with a
knife

Instrument

The means/intermediary used
to perform the action

John cut an apple with a
knife

Location

Slides by Vivek Srikuma

The location of the event

John placed an apple on
the table
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What is the set of labels?

We want the labels to be participants in event frames
— That is, the semantic arguments of events

Coming up with a closed set of labels can be daunting

Some examples (

Slides by Vivek Srikuma

):

Semantic role

Description

Example

Agent The entity who initiates an John cut an apple with a
event knife

Patient The entity who undergoes a John cut an apple with a
change of state knife

Instrument The means/intermediary used |John cut an apple with a
to perform the action knife

Location The location of the event John placed an apple on

the table
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Two styles of labels commonly seen

* FrameNet [Fillmore et al]

— Labels are fine-grained semantic roles based on the theory of Frame Semantics
* e.g. Agent, Patient, Instrument, Location, Beneficiary, etc

— More a lexical resource than a corpus
* Each semantic frame associated with exemplars

* PropBank [Palmer et al]

— Labels are theory neutral but defined on a verb-by-verb basis
* More abstract labels: e.g. Arg0, Argl, Arg2, Arg-Loc, etc.

— An annotated corpus
* The Wall Street Journal part of the Penn Treebank

Slides by Vivek Srikumar
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FrameNet and PropBank: Examples

Jack bought a glove from Mary.

Jack acquired a glove from Mary.

Jack returned a glove to Mary.

Slides by Vivek Srikumar



FrameNet and PropBank: Examples

Jack bought a glove from Mary.

Buyer Goods Seller frame

Jack acquired a glove from Mary.

Recipient Theme source frame

Jack returned a glove to Mary.
Agent Theme Recipient

FrameNet frame elements

Slides by Vivek Srikumar
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FrameNet and PropBank: Examples

Jack bought a glove from Mary.

Arg0 Argl Arg?2

Jack acquired a glove from Mary.
Arg0 Argl Arg?2

Jack returned a glove to Mary.
Arg0 Argl Arg?2

PropBank labels. The interpretation of these labels depends on the verb

Slides by Vivek Srikumar



Semantic Role Labeling

° MOStly based on PrOpBank [Palmer et. al. o5]

— Large human-annotated corpus of verb semantic
relations

e The task: To predict arguments of verbs

Given a sentence, identifies who do®s what to whom, where and when.

The bus was heading for Nairobi in
Kenya
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Semantic Role Labeling

° MOStly based on PrOpBank [Palmer et. al. o5]

— Large human-annotated corpus of verb semantic
relations

e The task: To predict arguments of verbs

Given a sentence, identifies who do®s what to whom, where and when.

The bus was heading for Nairobi in
Kenya

Relation: Head
Mover[AOQ]: the bus
[A1]: Nairobi in Kenya
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Semantic Role Labeling

° MOStly based on PrOpBank [Palmer et. al. o5]

— Large human-annotated corpus of verb semantic
relations

e The task: To predict arguments of verbs

Given a sentence, identifies who do®s what to whom, where and when.

The bus was heading for Nairobi in

Kenya
Predicate ~|= — _ _ _
= = = = Relation: Head
______ » Mover[AOQ]: the bus
Arguments [=I= = — — _ _ X [A1]: Nairobi in Kenya
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Predicting verb arguments

A state-of-the-art pre-neural network approach
The bus was for Nairobi in Kenya.
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Predicting verb arguments

A state-of-the-art pre-neural network approach
The bus was for Nairobi in Kenya.

1. |ldentify candidate arguments
for verb using parse tree
— Filtered using a binary classifier
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Predicting verb arguments

A state-of-the-art pre-neural network approach
The bus was

1. |ldentify candidate arguments
for verb using parse tree
— Filtered using a binary classifier

2. Classify argument candidates

— Multi-class classifier (one of multiple —
labels per candidate)

~

Slides by Vivek Srikumar

for Nairobi in Kenya.

4
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Predicting verb arguments

A state-of-the-art pre-neural network approach
The bus was

1. ldentify candidate arguments
for verb using parse tree
— Filtered using a binary classifier

2. Classify argument candidates
— Multi-class classifier (one of multiple —
labels per candidate)

3. Inference
— Using probability estimates from
argument classifier

— Must respect structural and _
linguistic constraints
* Eg: No overlapping arguments

Slides by Vivek Srikumar

for Nairobi in Kenya.

4
4
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How well did these perform?

 Shared tasks and evaluations based on PropBank
— F1scores across all labels
— [Toutanova et al. 2005-2008]: 80.3
— [Punyakanok et al. 2005-2008]: 79.4
— [Tackstrom et al 2015]: 79.9
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How well did these perform?

 Shared tasks and evaluations based on PropBank
— F1scores across all labels
— [Toutanova et al. 2005-2008]: 80.3
— [Punyakanok et al. 2005-2008]: 79.4
— [Tackstrom et al 2015]: 79.9

« Common characteristics of these approaches
— Rich features
— Used an ensemble of classifiers
— Used some way to integrate multiple multi-class decisions

. Eithder only at prediction time or at both training time and when the model is
use

Slides by Vivek Srikumar



Why is this problem hard?

Encompasses a wide variety of linguistic phenomena
— Accounts for prepositional phrase attachment

John frightened the raccoon with a big tail.

Arg Arg
0 1

John frightened the raccoon with a big stick.

Arg Arg
0 1

Slides by Vivek Srikumar
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Why is this problem hard?

Encompasses a wide variety of linguistic phenomena
— The dependencies can be very far away

John frightened the raccoon.

John walked quietly and frightened the raccoon.

John walked quietly into the garden and frightened the
raccoon.

In all three cases, John is the Arg0 of frightened....
...but it can be far away from the verb.

Slides by Vivek Srikumar

76



Why is this problem hard?

Encompasses a wide variety of linguistic phenomena
— Unifies syntactic alternations

John broke the vase

Subject position = Object position =
Arg0 Argl

The vase broke

Subject position =
Argl

Slides by Vivek Srikumar
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Performance

Shared tasks and evaluations based on PropBank
— Fa scores across all labels
— [Toutanova et al. 2005-2008]: 80.3
— [Punyakanok et al. 2005-2008]: 79.4
— [Tackstrom et al 2015]: 79.9
— [Fitzgerald et al 2015] (structured, product of experts): 80.3

— [He et al 2017](with product of experts): 84.6
« No hand-designed features!

Slides by Vivek Srikumar



More recently in the SRL world; 88.8 F1

B-ARG1
T I e e e R T M et
I_T_jl '\_T_) '\_T_) '\_T_J '\_f_' '\_T_/' '\_T_J s
v [ Y v v o

[CLS] Barack Obama went to Paris [SEP] went [SEP]
[Figure from: Shi and Lin, 2019] /9



https://arxiv.org/abs/1904.05255

Must in NLP: Knowing who is being talk about in a
text

Taylor and Morgan went to a conference in Seattle. Taylor was excited to unveil her research on marine biology,
while Morgan was keen on discussing her innovations in renewable energy. At the conference, Taylor impressed
the audience with her presentation, and Morgan formed valuable connections with industry leaders. In the
evening, Taylor and Morgan went downtown and they enjoyed a jazz concert.
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Discourse

A discourse model [Karttunen et al., 1969] is @ mental model that the understander builds incrementally when
interpreting a text, containing:

- representations of the entities referred to in the text,
-» properties of the entities and relations among them.

We use discourse to refer to a coherent structured group of sentences that make up language

Coherence refers to the relationship between sentences that makes real discourses different than just random
assemblages of sentences
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https://aclanthology.org/C69-7001/

Terminology

Mentions:
Linguistic expressions like “her”, “Taylor”, “Morgan”,

” 11

“Taylor and Morgan”, “they”

Referent:
The discourse entity that is referred (“Taylor”,

” 1]

“Morgan”, “Taylor and Morgan”)

Two or more referring expressions that are
used to refer to the same discourse entity are said to
corefer

@® (Taylor, her}

e {Morgan, her}

e {Taylor and Morgan, they}

Taylor and Morgan went to a conference in
Seattle. Taylor was excited to unveil her
research on marine biology, while Morgan
was keen on discussing her innovations in
renewable energy. At the conference, Taylor
impressed the audience with her
presentation, and Morgan formed valuable
connections with industry leaders. In the
evening, Taylor and Morgan went downtown
and they enjoyed a jazz concert.
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Terminology (cont.)

Anaphora:
Reference in a text to an entity that has been
previously introduced into the discourse

Antecedent:
A prior mention of the entity

Singleton:
An entity that has only a single mention in a text

Taylor and Morgan went to a conference in
Seattle. Taylor was excited to unveil her
research on marine biology, while Morgan
was keen on discussing her innovations in
renewable energy. At the conference, Taylor
impressed the audience with her
presentation, and Morgan formed valuable
connections with industry leaders. In the
evening, Taylor and Morgan went downtown
and they enjoyed a jazz concert.
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Coreference resolution

The task of determining whether two mentions corefer (refer to
the same entity in the discourse model)

Coreference chain or cluster:
The set of coreferring expressions

@ (Taylor, her, the 24-year-old}
® {Morgan, her}
e {Taylor and Morgan, they}

Coreference resolution comprises two sub-tasks:

1. Identifying the mentions (easier)
2. Clustering them into coreference chains

Taylor and Morgan went to a conference in
Seattle. Taylor was excited to unveil her
research on marine biology, while Morgan
was keen on discussing her innovations in
renewable energy. At the conference, Taylor
impressed the audience with her
presentation as the 24-year-old, and Morgan
formed valuable connections with industry
leaders. In the evening, Taylor and Morgan
went downtown and they enjoyed a jazz
concert.
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