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Logistics

• Final project:
• Mid-project report is due March 28.
• Project presentations: April 16, 18* 
• Final project report due date: Tentatively April 25. 

• There will be a quiz every week (either or both days) starting next week. 
• Next week quiz: Multimodal LMs (reading announced on teams)

• Mid-semester feedback: shared a Google form on teams.  
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(We know that) Training big models is expensive

HOLISTICALLY EVALUATING THE ENVIRONMENTALIMPACT OF CREATING LANGUAGE MODELS

https://openreview.net/pdf?id=04qx93Viwj


But inference is even more expensive

https://www.semianalysis.com/p/the-inference-cost-of-search-disruption

http://www.semianalysis.com/p/the-inference-cost-of-search-disruption


Models aren’t getting 
much smaller



• How can we cheaply, efficiently, and equitably deploy 
NLP systems without sacrificing performance?

Today’s Topic



This Lecture
‣ Decoding optimizations: exact decoding, but faster
‣ Speculative decoding
‣ Medusa heads

‣ Model compression

‣ Parameter-efficient tuning

‣ Pruning LLMs
‣ Distilling LLMs

‣ Flash attention

‣ LLM quantization



Decoding Optimizations



Decoding Basics

<s>       I       saw    the    dog

I       saw    the    dog  running

running

to

to

the

Prompt (prefix of p tokens) Decoded tokens (k)

L transformer 
layers

Operations for one decoder pass:

Operations for k decoder passes:
Number of layers in decoder 
(non-parallelizable):

O(pL)

O(pk2L) O(kL)



Speculative Decoding

<s>       I       saw    the    dog

I       saw    the    dog  running

running     to       the    house

‣ Key idea a forward pass for several tokens at a time is O(L) serial 
steps, since the tokens can be computed in parallel

‣ Can we predict many tokens with a weak model and then “check” 
them with a single forward pass?

Prompt (prefix of p tokens) Decoded tokens (k)



Speculative Decoding

<s>       I       saw    the    dog

I       saw    the    dog  running

running

Distribution over vocabulary

‣ When sampling, we need the whole distribution

‣ When doing greedy decoding, we only need to know what token was 
the max

Prompt (prefix of p tokens) Decoded tokens (k)



Speculative Decoding

<s>       I       saw    the    dog

I       saw    the    dog  running

running     to       the    house

‣ We can use a small, cheap model to do inference, then check that 
“to”, “the”, “house”, “quickly” are really the best tokens from a 
bigger model

to         the   house  quickly

Prompt (prefix of p tokens) Decoded tokens (k)

Leviathan et al. (2023)



Speculative Decoding: Flow

<s>       I       saw    the    dog

I       saw    the    dog  running

running     to       the    house

‣ Produce decoded tokens one at a time from a fast draft model…

to        the   house  quickly

DRAFT DRAFT DRAFT DRAFT DRAFT

<s>       I       saw    the    dog

I       saw    the    dog  running

running     to       the    house

to        the   house  quickly

MAIN MAIN

‣ Confirm that the tokens are the max tokens from the slower main model. 
Any “wrong” token invalidates the rest of the sequence





Speculative Decoding

‣ Can also adjust this to use sampling. Treat this as a proposal distribution 
q(x) and may need to reject + resample (rejection sampling)

Leviathan et al. (2023)



Speculative Decoding
‣ Find the first index that was 

rejected by the sampling 
procedure, then resample from 
there

Leviathan et al. (2023)



Medusa Heads

https://www.together.ai/blog/medusa

‣ The “draft model” consists 
of multiple prediction 
heads trained to predict the  
next k tokens



Medusa Heads

https://www.together.ai/blog/medusa

‣ Speedup with no loss in 
accuracy!



Other Decoding Improvements

‣ Batching parallelism: improve throughput by decoding many examples in 
parallel. (Does not help with latency, and it’s a little bit harder to do in 
production if requests are coming in asynchronously)

‣ Low-level hardware optimizations?

‣ Most other approaches to speeding up require changing the model 
(making a faster Transformer) or making it smaller (distillation, 
pruning; discussed next)

‣ Easy things like caching (KV cache: keys + values for context tokens 
are cached across multiple tokens)



Flash Attention



Flash Attention

‣ Does extra computation during attention, but avoids expensive 
reads/writes to GPU “high-bandwidth memory.” Recomputation is 
all in SRAM and is very fast

‣ Essentially: store a running sum for the softmax, compute values as needed



Flash Attention

‣ Gives a speedup for free — with no cost in accuracy (modulo 
numeric instability)

‣ Outperforms the speedup from many other approximate 
Transformer methods, which perform substantially worse



Model Compression



Model Compression

1.Quantization
• keep the model the same but reduce the number of bits
2.Pruning
• remove parts of a model while retaining performance
3.Distillation
• train a smaller model to imitate the bigger model



Why is this even possible?



Overparameterized models are easier to optimize 
(Du and Lee 2018)



Quantization



Post-Training Quantization
• Example: Train a 65B-param model with whatever precision you 

like, then quantize the weights

65B parameters * 4b = 260GB 
65B parameters * 2b = 130GB 
65B parameters * 1b = 65GB 

65B parameters * 1 bit = 8.1GB

Model



Floating point numbers
•

Floating point number is stored as (-1)s M 2E

• Sign bit s

• Fractional part M = frac

• Exponential part E = exp - bias



Reduced-precision floating point types



Int8 quantization
• Absolute Maximum (absmax) quantization:

•

This scales inputs to [-127, 127]

[ 0.5, 20, -0.0001, -.01, -0.1 ]

• Maximum entry is 20

• round(127/20 * [ 0.5, 20, -0.0001, -.01, -0.1 ]) ->
[ 3, 127, 0, 0, -1 ]



Extreme Example: Binarized Neural Networks

0.23

0.37

0.84

0.21 0.51 0.81 0.49

Full Precision
movie

0 1 0 1

0
0
1

1-Bit
movie



Extreme Example: Binarized Neural Networks

I hate this movie </s>

この 映画 が 嫌い

この 映画 が 嫌い </s>
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Extreme Example: Binarized Neural Networks

this movie
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Model-Aware Quantization: GOBO
(Zadeh et al. 2020)

• BERT weights in each layer tend to lie on a Gaussian

Only small fraction of weights in each layer are in the tails of the distribution•

• Quantize the 99.9% of weights in the body of the disribution into 8 buckets

Do not quantize the remaining 0.01%•



Model-Aware Quantization: LLM.int8
(Dettmers et al. 2022)

• Problem with prev approach: quantizing each layer uniformly
• 95% of params in Transformer LLMs are matrix multiplication

• Quantization overhead slowns down <6.7B models, but enables 
inference of 175B models on single GPUs (in half the time)



Hardware Concerns
(Shen et al. 2019)

• Not all data types (e.g. “Int3”) are supported by most hardware
• PyTorch only supports certain data types (e.g. no support for Int4)



Hardware Concerns
(Shen et al. 2019)

• Not all data types (e.g. “Int3”) are supported by most hardware
• PyTorch only supports certain data types (e.g. no support for Int4)
• Some quantization methods require writing bespoke hardware 

accelerators



Quantization-Aware Training



Binarized Neural Networks
(Courbariaux et al. 2016)

• Weights are -1 or 1 everywhere
• Activations are also binary

• Defined stochastically: choose 0 with probability σ(x) and 1 
with probability 1 - σ(x)

• Backprop is also discretized



Binarized Neural Networks
(Courbariaux et al. 2016)



Q-LORA
(Dettmers et al. 2023)

Further compress memory requirements for training by

•

• 4-bit quantization of the model (please see the class on LoRA) Use of 

GPU memory paging to prevent OOM

• Can train a 65B model on a 48GB GPU!



Pruning



Pruning
• Remove parameters from the model after training



Pruning vs Quantization
• Quantization: no parameters are changed*, up to k bits of 

precision

• Pruning: a number of parameters are set to zero, the rest 
are unchanged



Lottery Ticket Hypothesis
Within a randomly initialized dense neural network, there exists 

a small subnetwork (a "winning ticket") that, when trained in 

isolation with the same initialization, can match or even 

outperform the original network.



Model Compression



Approaches to Compression
‣ Pruning: can we reduce the number of neurons in the model?

‣ Basic idea: remove low-magnitude weights

‣ Issue: sparse matrices are not fast, matrix multiplication is very 
fast on GPUs so you don’t save any time!



Approaches to Compression
‣ Pruning: can we reduce the number of neurons in the model?

‣ Basic idea: remove low-magnitude weights

‣ Instead, we want some kind of structured pruning. What does this look 
like?

‣ Still a challenge: if different layers have different sizes, your GPU 
utilization may go down



Sheared Llama

Mengzhou Xia et al. (2023)

‣ Idea 1: 
targeted 
structured 
pruning

‣ Parameterization and 
regularization encourage 
sparsity, even though the 
z’s are continuous

‣ Idea 2: continue training the model 
in its pruned state



Sheared Llama

Mengzhou Xia et al. (2023)

‣ (Slightly) better than models that were “organically” trained at these 
larger scales



Approaches to Compression
‣ Pruning: can we reduce the number of neurons in the model?

‣ Basic idea: remove low-magnitude weights

‣ Instead, we want some kind of structured pruning. What does this look 
like?

‣ Knowledge distillation

‣ Classic approach from Hinton et al.: train a student model to match 
distribution from teacher



DistilBERT
figure credit: Tianjian Li

Suppose we have a classification model with output Pteacher(y | x)

Minimize KL(Pteacher || Pstudent) to bring student dist close to teacher

Note that this is not using labels — it uses the teacher to “pseudo-label” 
data, and we label an entire distribution, not just a top-one label 



DistilBERT

Sanh et al. (2019)

‣ Use a teacher model as a large neural network, such as BERT

‣ Make a small student model that is half the layers of BERT. Initialize with 
every other layer from the teacher

figure credit: Tianjian Li



DistilBERT

Sanh et al. (2019)



Other Distillation

Cheng-Yu Hsieh et al. (2023)

‣ How to distill models for complex reasoning settings? Still an open 
problem!



Where is this going?

‣ Better GPU programming: as GPU performance starts to saturate, we’ll 
probably see more algorithms tailored very specifically to the 
affordances of the hardware

‣ Small models, either distilled or trained from scratch: as LLMs gets 
better, we can do with ~7B scale what used to be only doable with 
ChatGPT (GPT-3.5)

‣ Continued focus on faster inference: faster inference can be highly 
impactful across all LLM applications



Takeaways
‣ Decoding optimizations: speculative decoding gives a fast way to exactly 

sample from a smaller model. Also techniques like Flash Attention

‣ Model optimizations to make models smaller: pruning, distillation

‣ Model compression and quantization: standard compression 
techniques, but adapted to work really well for GPUs
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