Efficiency

CSE 5525: Foundations of Speech and Natural Language

Processing
https://shocheen.github.10/courses/cse-5525-spring-2025

Y N
@ THE OHIO STATE UNIVERSITY
N4

Slide Credits: Graham Neubig, Greg Durrett, Nishant Subramani, Sofia Serrano

Logistics

® Final project:
® Mid-project report is due March 28.
® Project presentations: April 16, 18*
® Final project report due date: Tentatively April 25.

® There will be a quiz every week (either or both days) starting next week.
® Next week quiz: Multimodal LMs (reading announced on teams)
® Mid-semester feedback: shared a Google form on teams.

(We know that) Training big modelsis expensive

Table 1: We developed our models in five groups, based on parameter count and architecture: less than 1
billion, 1 billion, 7 billion, and 13 billion parameters, and our mixture-of-experts model with 1 billion active
and 7 billion total parameters. We found that ~70% of our developmental environmental impact came from
developing the 7B and 13B models, and the total impact was emissions equivalent to 2.1 tanker trucks” worth
of gasoline, and equal to about 7 and a half years of water used by the average person in the United States.

Carbon Equivalent to... Water Equivalent to...
GPU Total o . . : , g
Hours MWh # Runs Emissions (energy usage, Consumption (water usage,
“ (tCO2eq) | home, U.S.) (kL) | person)
<1B | 29k 19 20 6 | yr, 4 mo 24 3 mo
7B 269k 196 373 65 13 yrs, 6 mo 252 2 yrs, 7 mo
13B 191k 116 156 46 9 yrs, 7 mo 402 3 yrs, 7 mo
MoE 27k 19 35 6 [yr, 4 mo 24 3 mo
Total 680k 459 813 159 33 yrs, 1 mo 843 7 yrs, S mo

HOLISTICALLY EVALUATING THE ENVIRONMENTALIMPACT OF CREATING LANGUAGE MODELS

https://openreview.net/pdf?id=04qx93Viwj

But inference is even more expensive

More importantly, inference costs far exceed training costs

when deploying a model at any reasonable scale. In fact, the costs to inference

ChatGPT exceed the training costs on a weekly basis.

https://www.semianalysis.com/p/the-inference-cost-of-search-disruption

http://www.semianalysis.com/p/the-inference-cost-of-search-disruption

30TS —» BlenderBot! @ o P Co @ @ . o @®
PLATO-XL Ghat(Bard* BingChat*

A GPT-4* EmieBot 35

billion parameters

Wu Dao 2.0
GLa:iA
PaLM2
Minerva
PaLM Mistraltlarge
EEDE! ='
Gopher pyaone
. Falcnrl 1EGE|
PanGu-Alpha

Modelsaren'tgetting =~ o %, aor
,....,,,..ﬂf*r-a Lwom FLQ oPTMEy Cloude 21 1?5iwu_hm
much smaller o %

Galactma IDEFICS

~ ' ’ .Dw;em.s 03
| G3PO

xl?ge NLLE 200 LhhidlelM - LkaMa2 @ @ Mistral-gmall
Falc:::n LLM
GPT-NeoX AlexaTM
o o o o
MM
@@ mGPT O e@¢ Dolly20 Orca2 @¢ i
; GPT-2 ¢ Codex ® o & 000 0¢ ©
il S o GPT-y ©9 @ ® Apaca Sail-7B MGIE
BERT TS Megatron-11B WelM Atlas
t
pre-2020 2020 21 22 23 2024 i TBC
Dawvid McCandless, Tom Evans, Paul Barton source: news reports, LifeArchitect ai
Information is Beautiful // UPDATED 20th Mar 24 * = parameters undisclosed // see the data

mane with VIZstoeet

The rise and rise of Al-based Large Language Models (LLMs) like GPT4, LaMDA, LLaMa, PalLM
and Jurassic=2.

Today's Topic

e How can we cheaply, efficiently, and equitably deploy

NLP systems without sacrificing performance?

This Lecture

~ Decoding optimizations: exact decoding, but faster
» Speculative decoding
> Medusa heads
>~ Flash attention

> Model compression
> Pruning LLMs
> Distilling LLMs

~ Parameter-efficient tuning

> LLM quantization

Decoding Optimizations

Decoding Basics

| saw the dog running to

I | e
L transformer
layers

I | | e

<s> | saw the dog running

Prompt (prefix of p tokens) Decoded tokens (k)

Operations for one decoder pass: Q(pL) Number of layers in decoder

Operations for k decoder passes: O(pk?L) (non-parallelizable): O(kL)

Speculative Decoding

| saw the dog running

e J 1 I o D A
<s> | saw the dog running to the house

Prompt (prefix of p tokens) Decoded tokens (k)

>~ Key idea a forward pass for several tokens at a time is O(L) serial
steps, since the tokens can be computed in parallel

~ Can we predict many tokens with a weak model and then “check”
them with a single forward pass?

Speculative Decoding

. Distribution over vocabulary
| saw the dog running

- 000000000001
I | D e
I | e
<s> | saw the dog running

Prompt (prefix of p tokens) Decoded tokens (k)

> When sampling, we need the whole distribution

> When doing greedy decoding, we only need to know what token was
the max

Speculative Decoding

| saw the dog running to the house quickly

e J 1 I o D A
<s> | saw the dog running to the house

Prompt (prefix of p tokens) Decoded tokens (k)

> We can use a small, cheap model to do inference, then check that
“to”, “the”, “house”, “quickly” are really the best tokens from a

bigger model Leviathan et al. (2023)

Speculative Decoding: Flow

saw the dog running to the house quickly

DRAFT DRAFT DRAFT DRAFT DRAFT

saw the dog running to the house

> Produce decoded tokens one at a time from a fast draft model...

saw the dog running to the house quickly

IVIAIN IVIAIN

saw the dog running to the house

> Confirm that the tokens are the max tokens from the slower main model.
Any “wrong” token invalidates the rest of the sequence

LLM Inference

Speculative Decoding

r‘

Prompt
Prefill

" LLM generates 1

-

Prompt
Prefill

X

%

" Draft generates 1

|) R
TAR= 2k
T

h

" LLM generates

-

[LLM generates " LLM generates
—>
X2 I X3
LLM prefills 1,_; Draft generates
A1, .- A) | Aty ---1 Ak+n+1

X4

L%

LLM prefills

k out of n tokens accepted,
repeat m times till termination

Xk+1s -+=1 Xk+n+1

Speculative Decoding

Leviathan et al. (2023)

!STARTl japan ; S benchmark bend n

[START] japan : 5 benchmark nikkei 22 ;5

ISTARTl japaq ; 5 PenchmarK EEEEEE EEE ;nde% rose Ez :E

[START] japan ' s benchmark nikkei 225 index rose 226 , 69 ; points
[START] japan ! s benchmark nikkei 225 index rose 226 . 69 points , or 9 1

I= I®

[START] japan

IWUn

benchmark nikkel 225 index rose 226 . 69 points , or

b b i | H — - —

. > percent , to 10 , 9859

H H | H —— — H —HH

>~ Can also adjust this to use sampling. Treat this as a proposal distribution
g(x) and may need to reject + resample (rejection sampling)

Speculative Decoding

>~ Find the first index that was
rejected by the sampling
procedure, then resample from

there

Leviathan et al. (2023)

Inputs: M,, M,,prefiz.

> Sample v guesses x4

for: =1 to~ydo
qi(x) <+ M,(prefix + [z1,...,2;—1])
z; ~ ¢;()

end for

> Run M, 1n parallel.

P1 (SU): .. :p’}erl(:E) —
M,(prefix),...,M,(prefiz + [x1,...,2,])

> Determine the number of accepted guesses n.

r,~U(0,1),...,7, ~U(0,1)

nmin({i —1|1<i<~,7 > 2EY0{y)})

q: ()
> Adjust the distribution from M, 1f needed.

p’(ﬂ_f:) — pn+1($)
if n < ~ then

p'(z) < norm(max(0,p,i1(x) — gni1(x)))
end if

> Return one token from M, and n tokens from M.
t ~ p'(x)
return prefix + [x1,...,ZT,,]

~ from M, autoregressively.

’’’’’

Medusa Heads

> The “draft model” consists
of multiple prediction
heads trained to predict the
next k tokens

https://www.together.ai/blog/medusa

2% Original Model

~

£ Top-k Predictions

[LM Head })[It, |, As]
A 4 I
y Medusa Heads
Last Hidden -)
- ~— > Medusa Head 1 > s, ', the
r’_ _\ ., %,
Transformer . .)
Layers \—» Medusa Head 2 » difficult, is,
\ S \ \
| “—>» Medusa Head 3 » not, difficult, a
Embedding ;) \)
{ D,
N\ /. . N\ (.. R
> Input Candidates / Single step prediction
What will happen if It is difficult not S It is difficult
Medusa meets a llama? It' difficult a X g)
\ P It is' not X ...
. J

Medusa Heads

» Speedup with no loss in
accuracy!

https://www.together.ai/blog/medusa

80

(o))
-

Tokens per Second
S
o

N
o

0

Speedup on different model sizes

1.9/7x

/B

1.92x

13B
Model Size

II :

Bl w/o Medusa
e w/ Medusa

33B

Other Decoding Improvements

» Most other approaches to speeding up require changing the model|
(making a faster Transformer) or making it smaller (distillation,
pruning; discussed next)

~ Batching parallelism: improve throughput by decoding many examples in
parallel. (Does not help with latency, and it’s a little bit harder to do in
production if requests are coming in asynchronously)

>~ Low-level hardware optimizations?

> Easy things like caching (KV cache: keys + values for context tokens
are cached across multiple tokens)

Flash Attention

Attention on GPT-2

K
Attention(Q, K, V) = softmax < V 1 Matmul
v di. 15
] Dropout
m
Operation Cost Bound --..E.--1 0
| & Softmax
QK OQ(nmdy,) Compute-bound E
Scaling ++/dg Q(nm) Memory-bound = Fused
5
Softmax Q(nm) Memory-bound MaSk Kernel
softmax(...)V OQ(nmd,) Compute-bound 1

] Matmul

PyTorch FlashAttention

Flash Attention

Outer Loop

Attention on GPT-2
Copy Block to
Outer Loop V- N Xd] Matmul

l -
0

Ki:dxN

—
U1

: 19 TB/s (20 MB) ;- N)] Dropout
| »
HBM: 1.5 TB/s (40 GB) g— 9 é10
3 | o] Softmax
5] - | E
:12.8GB/s ¢ D N Fused
(>1TB) g Mask Kernel
e I I
] Matmul

Memory Hierarchy with

Bandwidth & Memory Size sm(QKTV: N xd PyTorch FlashAttention

Inner Loop

- _ FIashAtter.ltion . .
~ Does extra computation during attention, but avoids expensive

reads/writes to GPU “high-bandwidth memory.” Recomputation is
all in SRAM and is very fast

>~ Essentially: store a running sum for the softmax, compute values as needed

Flash Attention

Models ListOps Text Retrieval Image Pathfinder | Avg | Speedup

Transformer 36.0 63.6 81.6 42.3 72.7 59.3 -

FLASHATTENTION 37.6 63.9 81.4 43.5 72.7 59.8 2.4X

Block-sparse FLASHATTENTION 37.0 63.0 81.3 43.6 73.3 59.6 2.8X%

Linformer (84| 35.6 55.9 7.7 37.8 67.6 54.9 2.5X

Linear Attention [50] 38.8 63.2 80.7 42.6 72.5 59.6 2.3%

Performer |12] 36.8 63.6 82.2 42.1 69.9 58.9 1.8%

Local Attention [80] 36.1 60.2 76.7 40.6 66.6 56.0 1.7%

Reformer |51} 36.5 63.8 78.5 39.6 69.4 57.6 1.3%

Smyrf (19| 36.1 64.1 79.0 39.6 70.5 57.9 1.7%

>~ Gives a speedup for free — with no cost in accuracy (modulo

numeric instability)

> Qutperforms the speedup from many other approximate
Transformer methods, which perform substantially worse

Model Compression

Model Compression

1 . Quantization

® keep the model the same but reduce the number of bits
2 . Pruning

® remove parts of a model while retaining performance
3 . Distillation

® train a smaller model to imitate the bigger model

Why is this even possible?

Overparameterized models are easier to optimize
(Du and Lee 2018)

networks. For a k£ hidden node shallow net-
work with quadratic activation and n training
data points, we show as long as £ > \V/2n, over-
parametrization enables local search algorithms
to find a globally optimal solution for general
smooth and convex loss functions. Further, de-

Quantization

Post-Training Quantization

- Example: Train a 65B-param model with whatever precision you
like, then quantize the weights

65B parameters * 4b = 260GB

65B parameters * 2b = 130GB s
65B parameters * 1b = 65GB e

65B parameters * 1 bit= 8.1GB B

Model

Floating point numbers

Floating point number is stored as (-1)s M 2E
.+ Sign bit s
- Fractional part M = frac

- Exponential part E = exp - bias

Reduced-precision floating point types

float16 (fp16)

sign exponent (5 bit) fraction (10 bit)
| | | | |
0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0
15 14 10 9 0

bfloat16

sign exponent (8 bit) fraction (7 bit)
| | | |
0 0 1 1 1 1 1 0 0 0 1 0 0 0 0 0

15 14 7 6 0

INnt8 quantization

Absolute Maximum (absmax) quantization:

127 - Xf16

I%?"X(‘Xflﬁij D

This scales inputs to [-127, 127]

Xig =

[0.5, 20, -0.0001, -.01, -0.1]
Maximum entry is 20

round(127/20 * [0.5, 20, -0.0001, -.01, -0.1]) ->
[3,127,0,0, -1]

Extreme Example: Binarized Neural Networks

1-Bit
movie

l
0000

EENE S

Full Precision

movie

Extreme Example: Binarized Neural Networks

hate this movie </s>

Extreme Example: Binarized Neural Networks

Full Precision

hate this movie
p
_
1-Bit
movie
[o 11 O] 1]
/ l"(‘)"l
a h >
o U a -

Frequency

Model-Aware Quantization: GOBO

(Zadeh etal. 2020)
BERT weights in each layer tend to lie on a Gaussian

« Only small fraction of weights in each layer are in the tails of the distribution

150000 - T === lLayer>s
g o Layer 10
125000 - = : == = |ayer 15
100000 - . "= lLayer20
. a = | gyer 25
75000 -
50000 - - AR
« £\
25000 - 5 /; ’\\.."
e ‘S ¢
0 — IS I D S J / \\._III_III_
-04 -03 -0.2 -0.1 0.0 0.1 0.2 0.3
Weight Value

Value

0.3~

0.2 7

0.1-

0.0 A

—0.1 -

—0:2

—0.3 -

_04 -

X
X X
X X X
WXe, X X . x ’5‘%@-@ XX X
% X
. X
X
0 100000 200000 300000 400000 500000 600000

Weight

Quantize the 99.9% of weights in the body of the disribution into 8 buckets

. Do not quantize the remaining 0.01%

-
o

T
©
(8 8]

Probability: weight belongs to fitted dist.

O
o

o o
N B

O
o

Model-Aware Quantization: LLM.int8
(Dettmers et al. 2022)

e Problem with prev approach: quantizing each layer uniformly
e 95% of params in Transformer LLMs are matrix multiplication

| LM.int8() (ot Qo ey

i (1) Find vector-wise constants: C, & G (2) Quantize (4) Dequantize

X*(127/C) =X -
- | X 12+ s 2 =X outx (¢, ®C,) o |
w _ = QOu '
f i 2|2[-1]-2 -110 WF;‘;(IZ'/'/CW) = WI8 127%127 F16 1
: 3 [01[-2 :
E 1|-1]1f0 1]2 i (3) Int8 Matmul :
X 2 [as]-1fa7]1 = - T B W X W = Out
~ BB 20 W C 18 18 132
-1]37]-1]83 0 0]-2 X -
FP16 |3 [-2| S EEEEEEEEEREmEmma=
]2
Frio 16-bit Decomposition
--
1 o
L_) (1) Decompose outliers (2) FP16 Matmul E
' 0
| SR 1
; TEBE W Axe Vg QUG Out
'Y D 210 FP16
Regular values ; A E
. ' S F16
Outliers ' F16

e (Quantization overhead slowns down <6.7B models, but enables
inference of 175B models on single GPUs (in half the time)

Hardware Concerns
(Shen et al. 2019)

e Not all data types (e.g. "Int3") are supported by most hardware
e PyTorch only supports certain data types (e.g. no support for Int4)

yTorch Docs > Quantization
Static Quantization Dynamic Quantization

nn.Linear Y (4

nn.Conv1d/2d/3d Y N

nn.LSTM Y (through Y

m modules)

nn.GRU N Y

nn.RNNCell N Y

nn.GRUCell N Y

nn.LSTMCell N Y

nn.EmbeddingBag Y (activations are in fp32) L

nn.Embedding Y Y

nn.MultiheadAttention Y (through custom modules) Not supported

Un-changed, computations stay in

Activations Broadly supported 8 P d

fp32

Hardware Concerns
(Shen et al. 2019)

e Not all data types (e.g. "Int3") are supported by most hardware

e PyTorch only supports certain data types (e.g. no support for Int4)
e Some quantization methods require writing bespoke hardware

accelerators

Model-Aware Quantization: GOBO
(Zadeh et al. 2020)

* BERT weights in each layer lie on a Gaussian

* Only small fraction of weights in each layer are in the tails of the distribution

LLLLLLL

||||||||

.......
00000000000000000000000000000000000000
eight value — Wei

* Quantize the 99.9% of weights in the body of the disribution into 8 buckets

* Do not quantize the remaining 0.01%

Quantization-Aware Training

Binarized Neural Networks
(Courbariaux et al. 2016)

e Weights are -1 or 1 everywhere

Activations are also binary
e Defined stochastically: choose 0 with probability o(x) and 1

with probability 1 - o(X)

e Backprop is also discretized

Binarized Neural Networks

(Courbariaux et al. 2016)

Data set MNIST SVHN CIFAR-10
Binarized activations+weights, during training and test
BNN (Torch?7) 1.40% 2.53% 10.15%
BNN (Theano) 0.96% 2.80% 11.40%
Committee Machines’ Array (Baldassi et al., 2015) 1.35% - -
Binarized weights, during training and test
BinaryConnect (Courbariaux et al., 2015) 1.29+ 0.08% 2.30% 9.90%
Binarized activations+weights, during test
EBP (Cheng et al., 2015) 2.24 0.1% - -
Bitwise DNNs (Kim & Smaragdis, 2016) 1.33% - -
No binarization (standard results)
Maxout Networks (Goodfellow et al.) 0.94% 2.47% 11.68%
Network in Network (Lin et al.) - 2.35% 10.41%
Gated pooling (Lee et al., 2015) - 1.69% 7.62%

Q-LORA

(Dettmers et al. 2023)

Further compress memory requirements for training by

- 4-bit quantization of the model (please see the class on LoRA) Use of

GPU memory paging to prevent OOM

Full Finetuning LoRA QLoRA
(No Adapters)
;::imizer i K e """--.\‘
000 | 00 Dy
“ O R Ry
Adapters
(16 bit) o O O o O O
. I s e *
~" 1 I F —

16-bit Transformer 16-bit Transformer 4-bit Transformer Faging Flow

- Can train a 65B model on a 48GB GPU!

Pruning

e Remove parameters from the model after training

Pruning vs Quantization

e Quantization: no parameters are changed*, up to k bits of
precision
e Pruning: a number of parameters are set to zero, the rest
are unchanged

Lottery Ticket Hypothesis

Within a randomly initialized dense neural network, there exists
a small subnetwork (a "winning ticket") that, when trained in
isolation with the same initialization, can match or even
outperform the original network.

—— 100.0 513 —— 21.1 —+— 70 —|— 36 —|— 1.9

0.99

0.98 -

0.97 -

0.96 -

Test Accuracy

0.95 -~

0.94

I | |
0 5000 10000 15000
Training Iterations

Model Compression

Approaches to Compression

> Pruning: can we reduce the number of neurons in the model?

> Basic idea: remove low-magnitude weights

> [ssue: sparse matrices are not fast, matrix multiplication is very
fast on GPUs so you don’t save any time!

Approaches to Compression

> Pruning: can we reduce the number of neurons in the model?

AFa ' AlAAVA a A A A A L) N AFa ! a L) N]
w A o ~’ \ w’ V \ v A U/ J \
@ @

> Instead, we want some kind of structured pruning. What does this look
like?

- Still a challenge: if different layers have different sizes, your GPU
utilization may go down

Sheared Llama

head inter layer
2 Z Z
» |dea 1: J d l
targeted
structured hidden—s
pruning

Source Model

> Parameterization and Ls=3,ds =6,Hs =4, ms =8

regularization encourage Structured
Pruning

sparsity, even though the >
Z's are continuous

Target Model
> |dea 2: continue training the model Ly =2,dr =3 Hr=2,mr =4
in its pruned state Mengzhou Xia et al. (2023)

Sheared Llama

Continued LM World Knowledge
Model (#tokens for training) LogiQA BoolQ (32) LAMBADA NQ (32) MMLU (5) Average
LLaMA2-7B 1! 30.7 82.1 28.8 73.9 46.6 64.6
OPT-1.3B 300B)' 26.9 57.5 58.0 6.9 24.7 48.2
Pythia-1.4B (300B)] 27.3 57.4 61.6 6.2 25.7 48.9
Sheared-LLLaMA-1.3B o) 26.9 64.0 61.0 9.6 25.7 51.0
OPT-2.7B 300B)' 26.0 63.4 63.6 10.1 25.9 514
Pythia-2.8B (300B)T 28.0 66.0 64.7 9.0 26.9 52.5
INCITE-Base-3B (800B) 27.7 65.9 65.3 14.9 27.0 54.7
Open-LLaMA-3B-vl am) 28.4 70.0 65.4 18.6 27.0 535.1
Open-LLaMA-3B-v2 an! 28.1 69.6 66.5 17.1 26.9 55.7
Sheared-LLLaMA-2.7B o) 28.9 73.7 68.4 16.5 26.4 56.7

> (Slightly) better than models that were “organically” trained at these

larger scales

Mengzhou Xia et al. (2023)

Approaches to Compression

> Pruning: can we reduce the number of neurons in the model?

AFa ' AlAAVA a A A A A L) N AFa ! a L) N]
w A o ~’ \ w’ V \ v A U/ J \
@ @

> Instead, we want some kind of structured pruning. What does this look
like?

» Knowledge distillation

> Classic approach from Hinton et al.: train a student model to match
distribution from teacher

DistilBERT

figure credit: Tianjian Li

Pre-trained Teacher | Zteacher

Network
Input
Data
Trainable Student | 7z . Knowledge
Network — Distillation

Suppose we have a classification model with output Pteacher(y | X)

Minimize KL(Pzeacher | | Pstudent) to bring student dist close to teacher

Note that this is not using labels — it uses the teacher to “pseudo-label”
data, and we label an entire distribution, not just a top-one label

DistilBERT

figure credit: Tianjian Li

Pre-trained Teacher | Zteacher

Network
Input
Data
Trainable Student | 7z . Knowledge
Network _" Distillation

> Use a teacher model as a large neural network, such as BERT

» Make a small student model that is half the layers of BERT. Initialize with
every other layer from the teacher

Sanh et al. (2019)

DistilBERT

Model Score CoLA MNLI MRPC QNLI QQP RTE SST-2 STS-B WNLI

ElLLMo 68.7 44.1 68.6 76.6
BERT-base 79.5 56.3 86.7 88.6
DistilBERT 77.0 51.3 82.2 87.5

71.1 862 534 915 70.4 56.3
91.8 89.6 693 927 89.0 53.5
89.2 885 599 913 86.9 56.3

Table 2: DistilBERT yields to comparable
performance on downstream tasks. Com-
parison on downstream tasks: IMDD (test ac-
curacy) and SQuAD 1.1 (EM/F1 on dev set).
D: with a second step of distillation during
fine-tuning.

Model IMDb SQuAD

(acc.) (EM/F1)
BERT-base 0346 81.2/88.5
DistilBERT 02.82 77.7/85.8
DistilBERT (D) - 79.1/86.9

Table 3: DistilBERT is significantly smaller
while being constantly faster. Inference
time of a full pass of GLUE task STS-B (sen-

timent analysis) on CPU with a batch size of
1.

Model # param. Inf. time
(Millions) (seconds)
ELMo 180 895
BERT-base 110 668
DistilBERT 66 410

Sanh et al. (2019)

Other Distillation

Data Rationale Label
Premise: A person on a horse jumps over a broken down airplane. The person could be training his horse for a eutral
Hypothesis: A person is training his horse for a competition. competition, but it is not necessarily the case.

r N

Question: A gentleman is carrying equipment for golf, what is he
likely to have?

Answers: (a) club (b) assembly hall (c) meditation center (d)
meeting, (e) church

The answer must be something that is used for golf.
LLM Of the above choices, only clubs are used for golf. So club
the answer is (a) club

Luke scored 84 points after playing 2 rounds of a trivia game. If he
gained the same number of points each round. How many points
did he score per round?

Luke scored 84 points after 2 rounds. So he scored 84

points in 2 rounds. 84 / 2 = 42. The answer is (84 / 2) (8472)

label] Premise: A person on a horse jumps over a broken down airplane. eutral
Hypothesis: A person is training his horse for a competition. g A
Smaller Model
rationale] + Premise: A person on a horse jumps over a broken down airplane. \) The person could be training his horse for a
Hypothesis: A person is training his horse for a competition. competition, but it is not necessarily the case.

> How to distill models for complex reasoning settings? Still an open

problem! Cheng-Yu Hsieh et al. (2023)

Where is this going?

- Better GPU programming: as GPU performance starts to saturate, we’ll
probably see more algorithms tailored very specifically to the
affordances of the hardware

> Small models, either distilled or trained from scratch: as LLMs gets

better, we can do with ~7B scale what used to be only doable with
ChatGPT (GPT-3.5)

- Continued focus on faster inference: faster inference can be highly
impactful across all LLM applications

Takeaways

» Decoding optimizations: speculative decoding gives a fast way to exactly
sample from a smaller model. Also techniques like Flash Attention

» Model compression and quantization: standard compression
techniques, but adapted to work really well for GPUs

> Model optimizations to make models smaller: pruning, distillation

	Efficiency
	Logistics
	(We know that) Training big models is expensive
	But inference is even more expensive
	Models aren’t getting much smaller
	Slide Number 6
	This Lecture
	Decoding Optimizations
	Decoding Basics
	Speculative Decoding
	Speculative Decoding
	Speculative Decoding
	Speculative Decoding: Flow
	Slide Number 14
	Speculative Decoding
	Speculative Decoding
	Medusa Heads
	Medusa Heads
	Other Decoding Improvements
	Flash Attention
	Flash Attention
	Flash Attention
	Model Compression
	Model Compression
	Slide Number 27
	Overparameterized models are easier to optimize (Du and Lee 2018)
	Quantization
	Post-Training Quantization
	Floating point numbers
	Reduced-precision floating point types
	Int8 quantization
	Extreme Example: Binarized Neural Networks
	Extreme Example: Binarized Neural Networks
	Extreme Example: Binarized Neural Networks
	Model-Aware Quantization: GOBO
(Zadeh et al. 2020)
	Model-Aware Quantization: LLM.int8
	Hardware Concerns
	Hardware Concerns
	Quantization-Aware Training
	Binarized Neural Networks
(Courbariaux et al. 2016)
	Binarized Neural Networks
(Courbariaux et al. 2016)
	Q-LORA
	Pruning
	Pruning
	Pruning vs Quantization
	Lottery Ticket Hypothesis
	Model Compression
	Approaches to Compression
	Approaches to Compression
	Sheared Llama
	Sheared Llama
	Approaches to Compression
	DistilBERT
	DistilBERT
	DistilBERT
	Other Distillation
	Where is this going?
	Takeaways

