
Efficiency
CSE 5525: Foundations of Speech and Natural Language

Processing
https://shocheen.github.io/courses/cse-5525-spring-2025

Slide Credits: Graham Neubig, Greg Durrett, Nishant Subramani, Sofia Serrano

Logistics

• Final project:
• Mid-project report is due March 28.
• Project presentations: April 16, 18*
• Final project report due date: Tentatively April 25.

• There will be a quiz every week (either or both days) starting next week.
• Next week quiz: Multimodal LMs (reading announced on teams)

• Mid-semester feedback: shared a Google form on teams.

2

(We know that) Training big models is expensive

HOLISTICALLY EVALUATING THE ENVIRONMENTALIMPACT OF CREATING LANGUAGE MODELS

https://openreview.net/pdf?id=04qx93Viwj

But inference is even more expensive

https://www.semianalysis.com/p/the-inference-cost-of-search-disruption

http://www.semianalysis.com/p/the-inference-cost-of-search-disruption

Models aren’t getting
much smaller

• How can we cheaply, efficiently, and equitably deploy
NLP systems without sacrificing performance?

Today’s Topic

This Lecture
‣ Decoding optimizations: exact decoding, but faster
‣ Speculative decoding
‣ Medusa heads

‣ Model compression

‣ Parameter-efficient tuning

‣ Pruning LLMs
‣ Distilling LLMs

‣ Flash attention

‣ LLM quantization

Decoding Optimizations

Decoding Basics

<s> I saw the dog

I saw the dog running

running

to

to

the

Prompt (prefix of p tokens) Decoded tokens (k)

L transformer
layers

Operations for one decoder pass:

Operations for k decoder passes:
Number of layers in decoder
(non-parallelizable):

O(pL)

O(pk2L) O(kL)

Speculative Decoding

<s> I saw the dog

I saw the dog running

running to the house

‣ Key idea a forward pass for several tokens at a time is O(L) serial
steps, since the tokens can be computed in parallel

‣ Can we predict many tokens with a weak model and then “check”
them with a single forward pass?

Prompt (prefix of p tokens) Decoded tokens (k)

Speculative Decoding

<s> I saw the dog

I saw the dog running

running

Distribution over vocabulary

‣ When sampling, we need the whole distribution

‣ When doing greedy decoding, we only need to know what token was
the max

Prompt (prefix of p tokens) Decoded tokens (k)

Speculative Decoding

<s> I saw the dog

I saw the dog running

running to the house

‣ We can use a small, cheap model to do inference, then check that
“to”, “the”, “house”, “quickly” are really the best tokens from a
bigger model

to the house quickly

Prompt (prefix of p tokens) Decoded tokens (k)

Leviathan et al. (2023)

Speculative Decoding: Flow

<s> I saw the dog

I saw the dog running

running to the house

‣ Produce decoded tokens one at a time from a fast draft model…

to the house quickly

DRAFT DRAFT DRAFT DRAFT DRAFT

<s> I saw the dog

I saw the dog running

running to the house

to the house quickly

MAIN MAIN

‣ Confirm that the tokens are the max tokens from the slower main model.
Any “wrong” token invalidates the rest of the sequence

Speculative Decoding

‣ Can also adjust this to use sampling. Treat this as a proposal distribution
q(x) and may need to reject + resample (rejection sampling)

Leviathan et al. (2023)

Speculative Decoding
‣ Find the first index that was

rejected by the sampling
procedure, then resample from
there

Leviathan et al. (2023)

Medusa Heads

https://www.together.ai/blog/medusa

‣ The “draft model” consists
of multiple prediction
heads trained to predict the
next k tokens

Medusa Heads

https://www.together.ai/blog/medusa

‣ Speedup with no loss in
accuracy!

Other Decoding Improvements

‣ Batching parallelism: improve throughput by decoding many examples in
parallel. (Does not help with latency, and it’s a little bit harder to do in
production if requests are coming in asynchronously)

‣ Low-level hardware optimizations?

‣ Most other approaches to speeding up require changing the model
(making a faster Transformer) or making it smaller (distillation,
pruning; discussed next)

‣ Easy things like caching (KV cache: keys + values for context tokens
are cached across multiple tokens)

Flash Attention

Flash Attention

‣ Does extra computation during attention, but avoids expensive
reads/writes to GPU “high-bandwidth memory.” Recomputation is
all in SRAM and is very fast

‣ Essentially: store a running sum for the softmax, compute values as needed

Flash Attention

‣ Gives a speedup for free — with no cost in accuracy (modulo
numeric instability)

‣ Outperforms the speedup from many other approximate
Transformer methods, which perform substantially worse

Model Compression

Model Compression

1.Quantization
• keep the model the same but reduce the number of bits
2.Pruning
• remove parts of a model while retaining performance
3.Distillation
• train a smaller model to imitate the bigger model

Why is this even possible?

Overparameterized models are easier to optimize
(Du and Lee 2018)

Quantization

Post-Training Quantization
• Example: Train a 65B-param model with whatever precision you

like, then quantize the weights

65B parameters * 4b = 260GB
65B parameters * 2b = 130GB
65B parameters * 1b = 65GB

65B parameters * 1 bit = 8.1GB

Model

Floating point numbers
•

Floating point number is stored as (-1)s M 2E

• Sign bit s

• Fractional part M = frac

• Exponential part E = exp - bias

Reduced-precision floating point types

Int8 quantization
• Absolute Maximum (absmax) quantization:

•

This scales inputs to [-127, 127]

[0.5, 20, -0.0001, -.01, -0.1]

• Maximum entry is 20

• round(127/20 * [0.5, 20, -0.0001, -.01, -0.1]) ->
[3, 127, 0, 0, -1]

Extreme Example: Binarized Neural Networks

0.23

0.37

0.84

0.21 0.51 0.81 0.49

Full Precision
movie

0 1 0 1

0
0
1

1-Bit
movie

Extreme Example: Binarized Neural Networks

I hate this movie </s>

この 映画 が 嫌い

この 映画 が 嫌い </s>

0.21 0.51 0.81 0.49

0.79

0.44

0.05

0.73

0.97

0.94

0.83

0.37

0.54

0.20

0.79

0.64

0.23

0.37

0.84

0.03

0.37

0.14

0.39

0.37

0.99

0.03

0.88

0.74

0.73

0.02

0.64

0.81

0.71

0.14

0.93

0.75

0.99

0.41 0.63 0.24 0.57 0.21 0.99 0.49 0.65 0.21 0.51 0.81 0.49 0.23 0.46 0.14 0.49

0.87 0.56 0.68 0.0 0.72 0.30 0.52 0.990.75 0.05 0.70 0.130.66 0.42 0.49 0.90

Extreme Example: Binarized Neural Networks

this movie

0.83

0.37

0.54

0.20

0.79

0.64

0.23

0.37

0.84

0.41 0.63 0.24 0.57 0.21 0.99 0.49 0.65 0.21 0.51 0.81 0.49

movie movie movie

0 1 0 1 0 1 0 1 0 1 0 1

1
0
1

0
1
1

0
0
1

Full Precision
hate

1-Bit

Model-Aware Quantization: GOBO
(Zadeh et al. 2020)

• BERT weights in each layer tend to lie on a Gaussian

Only small fraction of weights in each layer are in the tails of the distribution•

• Quantize the 99.9% of weights in the body of the disribution into 8 buckets

Do not quantize the remaining 0.01%•

Model-Aware Quantization: LLM.int8
(Dettmers et al. 2022)

• Problem with prev approach: quantizing each layer uniformly
• 95% of params in Transformer LLMs are matrix multiplication

• Quantization overhead slowns down <6.7B models, but enables
inference of 175B models on single GPUs (in half the time)

Hardware Concerns
(Shen et al. 2019)

• Not all data types (e.g. “Int3”) are supported by most hardware
• PyTorch only supports certain data types (e.g. no support for Int4)

Hardware Concerns
(Shen et al. 2019)

• Not all data types (e.g. “Int3”) are supported by most hardware
• PyTorch only supports certain data types (e.g. no support for Int4)
• Some quantization methods require writing bespoke hardware

accelerators

Quantization-Aware Training

Binarized Neural Networks
(Courbariaux et al. 2016)

• Weights are -1 or 1 everywhere
• Activations are also binary

• Defined stochastically: choose 0 with probability σ(x) and 1
with probability 1 - σ(x)

• Backprop is also discretized

Binarized Neural Networks
(Courbariaux et al. 2016)

Q-LORA
(Dettmers et al. 2023)

Further compress memory requirements for training by

•

• 4-bit quantization of the model (please see the class on LoRA) Use of

GPU memory paging to prevent OOM

• Can train a 65B model on a 48GB GPU!

Pruning

Pruning
• Remove parameters from the model after training

Pruning vs Quantization
• Quantization: no parameters are changed*, up to k bits of

precision

• Pruning: a number of parameters are set to zero, the rest
are unchanged

Lottery Ticket Hypothesis
Within a randomly initialized dense neural network, there exists

a small subnetwork (a "winning ticket") that, when trained in

isolation with the same initialization, can match or even

outperform the original network.

Model Compression

Approaches to Compression
‣ Pruning: can we reduce the number of neurons in the model?

‣ Basic idea: remove low-magnitude weights

‣ Issue: sparse matrices are not fast, matrix multiplication is very
fast on GPUs so you don’t save any time!

Approaches to Compression
‣ Pruning: can we reduce the number of neurons in the model?

‣ Basic idea: remove low-magnitude weights

‣ Instead, we want some kind of structured pruning. What does this look
like?

‣ Still a challenge: if different layers have different sizes, your GPU
utilization may go down

Sheared Llama

Mengzhou Xia et al. (2023)

‣ Idea 1:
targeted
structured
pruning

‣ Parameterization and
regularization encourage
sparsity, even though the
z’s are continuous

‣ Idea 2: continue training the model
in its pruned state

Sheared Llama

Mengzhou Xia et al. (2023)

‣ (Slightly) better than models that were “organically” trained at these
larger scales

Approaches to Compression
‣ Pruning: can we reduce the number of neurons in the model?

‣ Basic idea: remove low-magnitude weights

‣ Instead, we want some kind of structured pruning. What does this look
like?

‣ Knowledge distillation

‣ Classic approach from Hinton et al.: train a student model to match
distribution from teacher

DistilBERT
figure credit: Tianjian Li

Suppose we have a classification model with output Pteacher(y | x)

Minimize KL(Pteacher || Pstudent) to bring student dist close to teacher

Note that this is not using labels — it uses the teacher to “pseudo-label”
data, and we label an entire distribution, not just a top-one label

DistilBERT

Sanh et al. (2019)

‣ Use a teacher model as a large neural network, such as BERT

‣ Make a small student model that is half the layers of BERT. Initialize with
every other layer from the teacher

figure credit: Tianjian Li

DistilBERT

Sanh et al. (2019)

Other Distillation

Cheng-Yu Hsieh et al. (2023)

‣ How to distill models for complex reasoning settings? Still an open
problem!

Where is this going?

‣ Better GPU programming: as GPU performance starts to saturate, we’ll
probably see more algorithms tailored very specifically to the
affordances of the hardware

‣ Small models, either distilled or trained from scratch: as LLMs gets
better, we can do with ~7B scale what used to be only doable with
ChatGPT (GPT-3.5)

‣ Continued focus on faster inference: faster inference can be highly
impactful across all LLM applications

Takeaways
‣ Decoding optimizations: speculative decoding gives a fast way to exactly

sample from a smaller model. Also techniques like Flash Attention

‣ Model optimizations to make models smaller: pruning, distillation

‣ Model compression and quantization: standard compression
techniques, but adapted to work really well for GPUs

	Efficiency
	Logistics
	(We know that) Training big models is expensive
	But inference is even more expensive
	Models aren’t getting much smaller
	Slide Number 6
	This Lecture
	Decoding Optimizations
	Decoding Basics
	Speculative Decoding
	Speculative Decoding
	Speculative Decoding
	Speculative Decoding: Flow
	Slide Number 14
	Speculative Decoding
	Speculative Decoding
	Medusa Heads
	Medusa Heads
	Other Decoding Improvements
	Flash Attention
	Flash Attention
	Flash Attention
	Model Compression
	Model Compression
	Slide Number 27
	Overparameterized models are easier to optimize (Du and Lee 2018)
	Quantization
	Post-Training Quantization
	Floating point numbers
	Reduced-precision floating point types
	Int8 quantization
	Extreme Example: Binarized Neural Networks
	Extreme Example: Binarized Neural Networks
	Extreme Example: Binarized Neural Networks
	Model-Aware Quantization: GOBO
(Zadeh et al. 2020)
	Model-Aware Quantization: LLM.int8
	Hardware Concerns
	Hardware Concerns
	Quantization-Aware Training
	Binarized Neural Networks
(Courbariaux et al. 2016)
	Binarized Neural Networks
(Courbariaux et al. 2016)
	Q-LORA
	Pruning
	Pruning
	Pruning vs Quantization
	Lottery Ticket Hypothesis
	Model Compression
	Approaches to Compression
	Approaches to Compression
	Sheared Llama
	Sheared Llama
	Approaches to Compression
	DistilBERT
	DistilBERT
	DistilBERT
	Other Distillation
	Where is this going?
	Takeaways

