Multimodality Contd, Mutilinguality

- - https://shocheen.github.io/courses/cse-5525-spring-2025

CSE 5525: Foundations of Speech and Natural Language Processing

THE OHIO STATE UNIVERSITY

Slide Credits: Greg Durrett, Ana Marasović, Antonios Anastasopoulos

Logistics

- Final project:
 - Mid-project report is due Today! No slip days.
 - Project presentations: April 16, 18.
 - Final project report due date: April 25.
- Guest lectures next week (Retrieval, Agents) No quiz
 - One more quiz the week after (we will take top 1 out of 3).

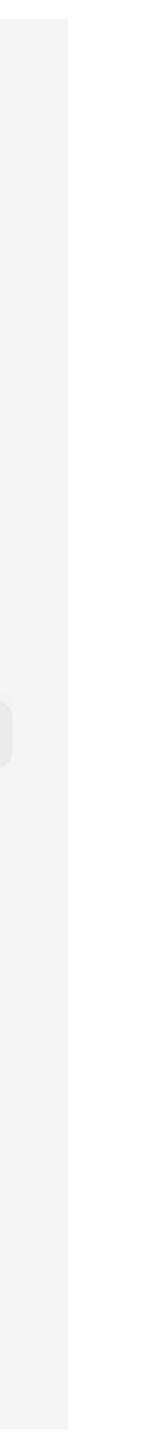
Multimodality

LMs today can process more than just text

Al or Not game. Is this image real or AI? Can you tell? Take the test

Best of 8

selfie view of the photographer, as she turns around to high five him



Goals of Today's Lecture

Goal: Learn how some LLMs work with more than just text

- Motivation for V&L models
- Vision Transformer
- Classification with Image+Text Input
- Generation with Image+Text Input
- Video Processing (briefly)
- Speech Processing (briefly)

Vision Transformer (ViT)

<u>An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale</u> <u>Tutorial 11: Vision Transformers</u> Figure: <u>https://github.com/lucidrains/vit-pytorch/blob/main/images/vit.gif</u>

Vision Transformer (ViT) We learned that pretraining helps!

<u>An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale</u> **Tutorial 11: Vision Transformers** Figure: https://github.com/lucidrains/vit-pytorch/blob/main/images/vit.gif

Why do we want to build multimodal models?

- Image understanding
- Image Generation
- . Improve text understanding / generation?

Grounding text in Images How would you describe this image?

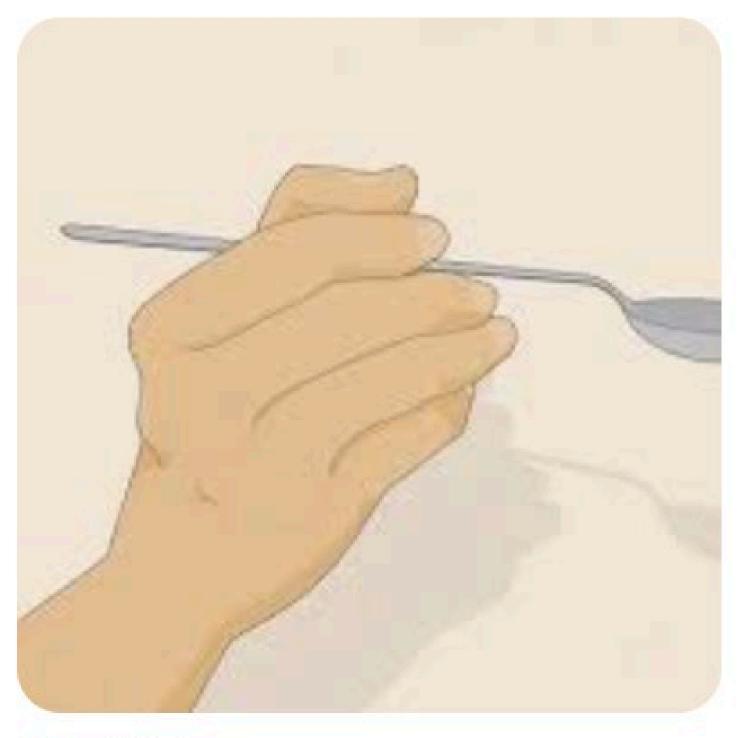
What does the word "spoon" evoke?

the girl is licking the spoon of batter

Grounding Spoon

Winco 0005-03 7 3/8" Dinner Spoon...

\$7.16

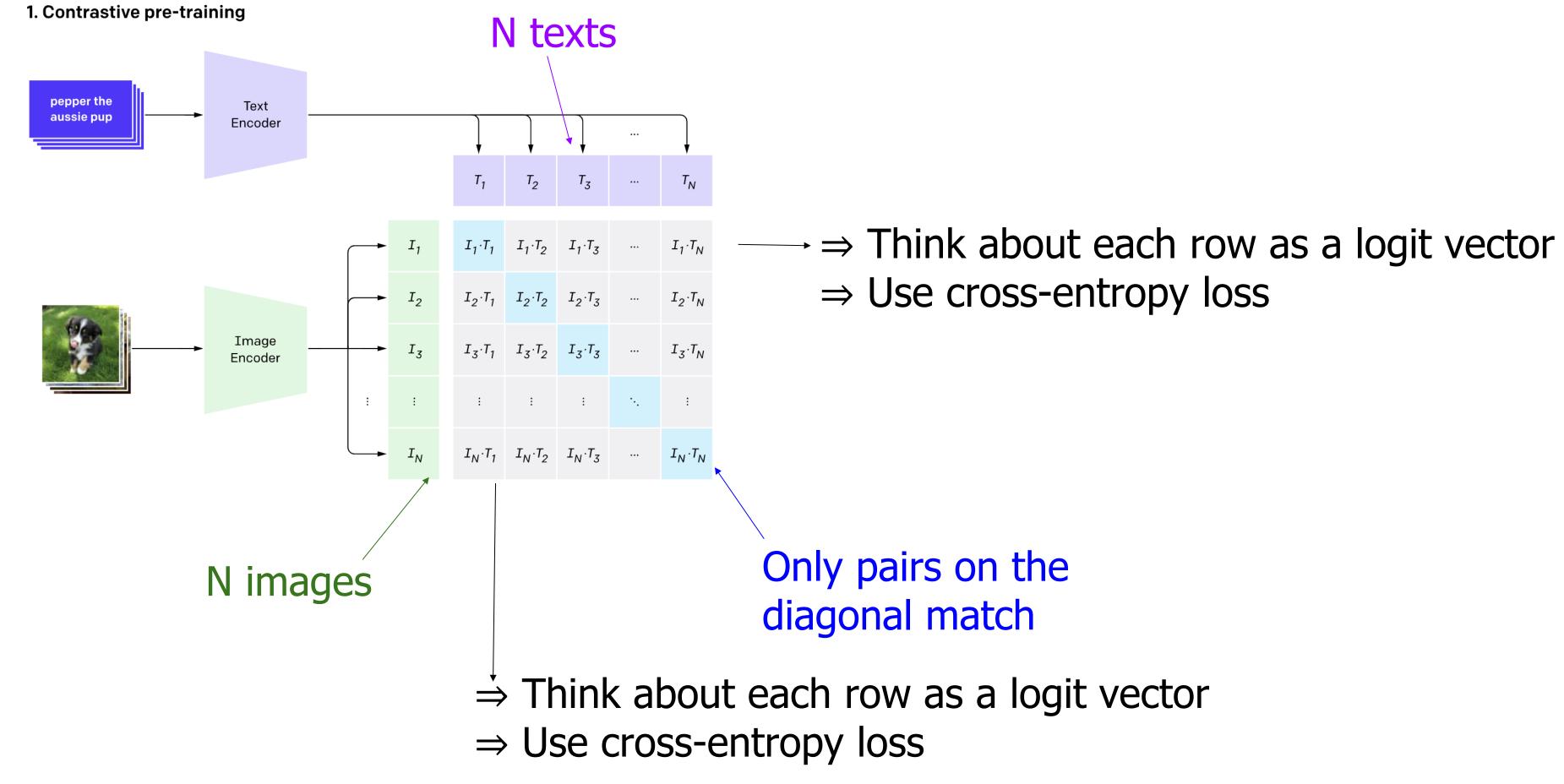


wikiHow How to Hold a Spoon: 13 Steps (...

GO Indiegogo Spoon that Elevates Taste ...

CLIP [Radford et al., 2021]; Conference presentation

– Contrastive pretraining

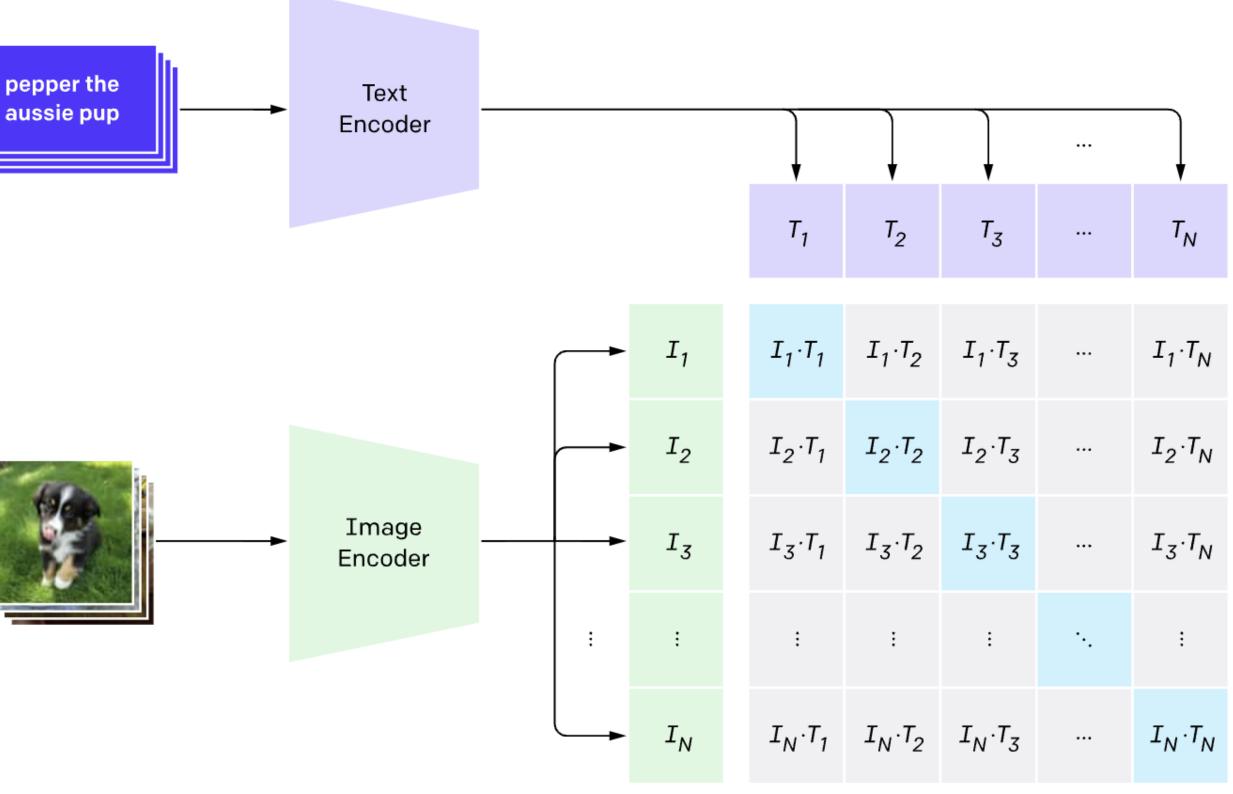


CLIP [Radford et al., 2021]; Conference presentation - Contrastive pretraining pseudorode

```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, 1] - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
               - learned temperature parameter
# t
# extract feature representations of each modality
I_f = image_encoder(I) #[n, d_i]
T_f = text_encoder(T) \#[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = l2_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_normalize(np.dot(T_f, W_t), axis=1)
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2
Figure 3. Numpy-like pseudocode for the core of an implementa-
tion of CLIP.
```

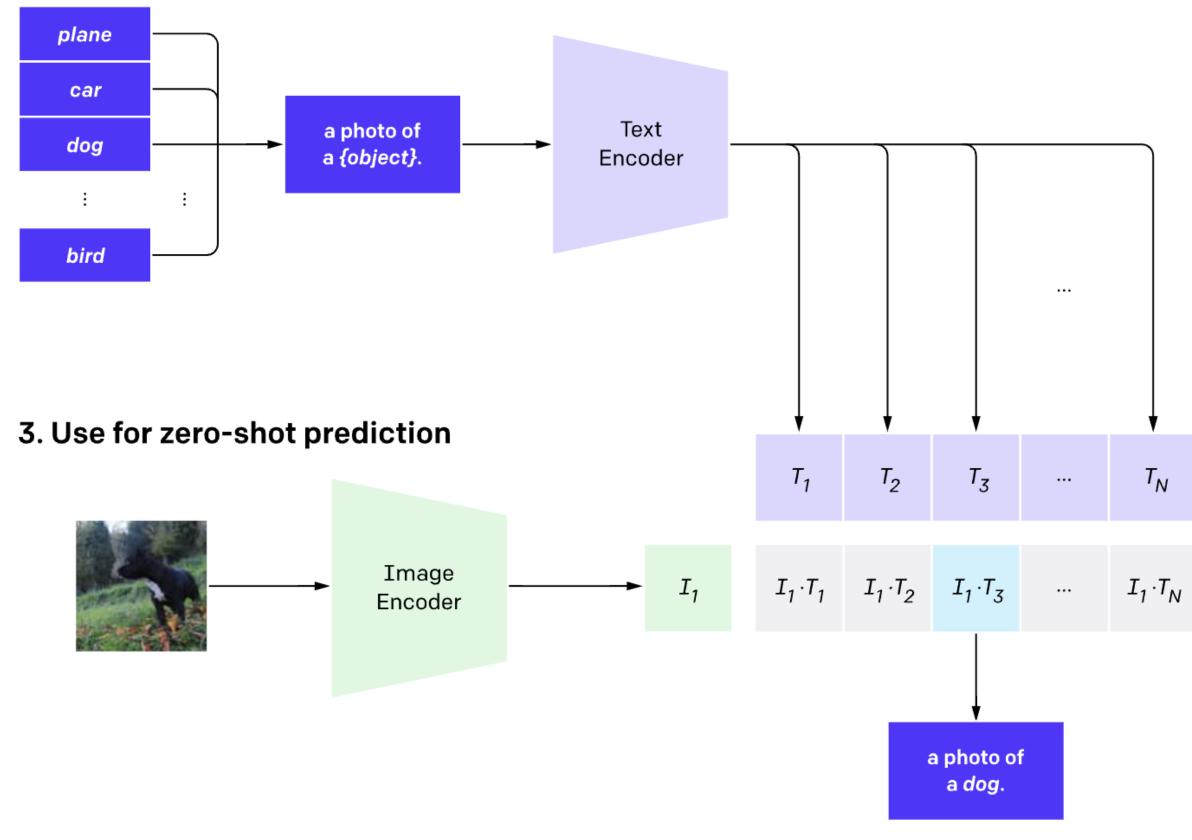

An open-sourced implementation of CLIP: <u>https://github.com/mlfoundations/open_clip</u>

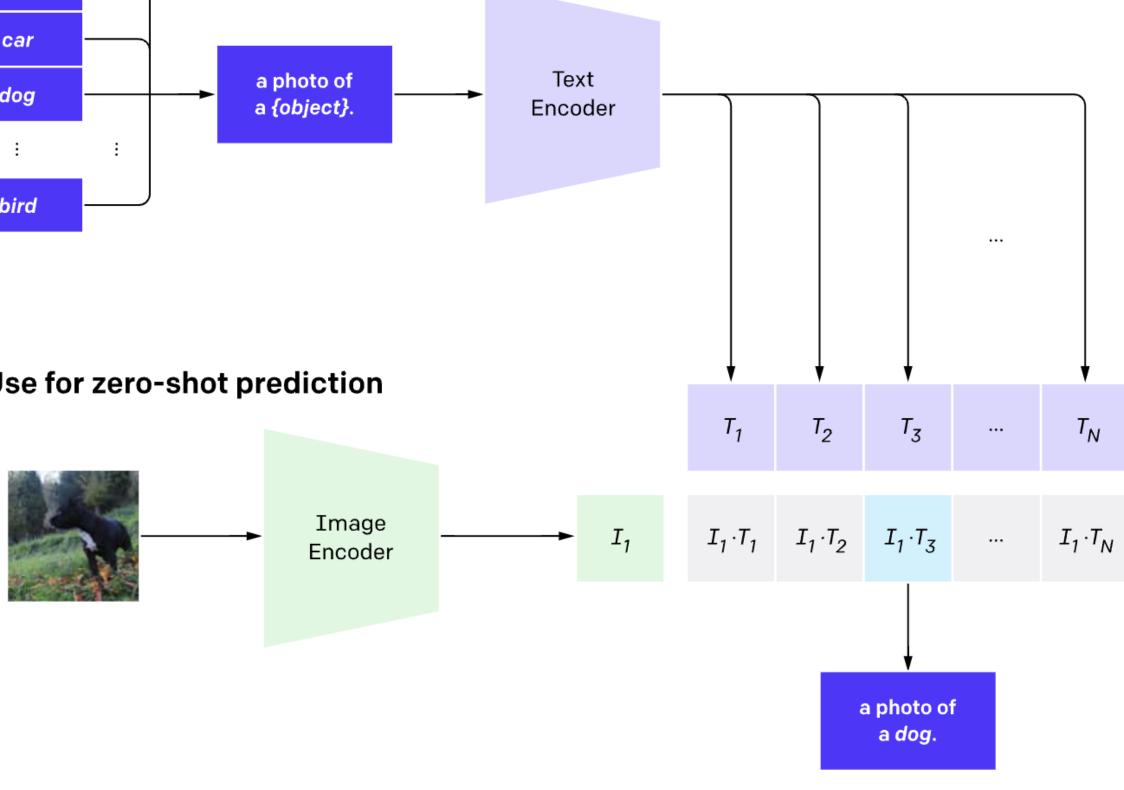
1. Contrastive pre-training



CLIP [Radford et al., 2021]; Conference presentation – Image classification

2. Create dataset classifier from label text





[Radford et al., 2021]; Conference presentation

Original repository, zero-shot prediction: https://github.com/openai/CLIP#zero-shot-prediction

In ecosystem:

Independently trained and larger CLIP: https://github.com/mlfoundations/open clip

https://huggingface.co/docs/transformers/model_doc/clip

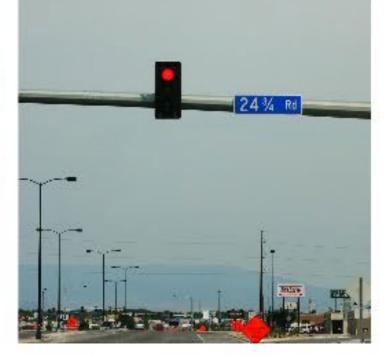
Goals of Today's Lecture

Goal: Lean how some LLMs that take more than just text

- Motivation for V&L models
- Vision Transformer
- **Classification with Image+Text Input**
- Generation with Image+Text Input
- Video Processing
- Speech Processing

16

- Q: What endangered animal is featured on the truck?
- A: A bald eagle.
- A: A sparrow.
- A: A humming bird.
- A: A raven.



- Q: Where will the driver go if turning right?
- A: Onto 24 3/4 Rd.
- A: Onto 25 3/4 Rd.
- A: Onto 23 3/4 Rd.
- A: Onto Main Street.

- Q: When was the picture taken?
- A: During a wedding.
- A: During a bar mitzvah.
- A: During a funeral.
- A: During a Sunday church service.

Multimodal Classification

- Q: Who is under the umbrella?
- A: Two women.
- A: A child.
- A: An old man.
- A: A husband and a wife.

- Q: Why was the hand of the woman over the left shoulder of the man?
- A: They were together and engaging in affection.
- A: The woman was trying to get the man's attention.
- A: The woman was trying to scare the man.
- A: The woman was holding on to the man for balance.

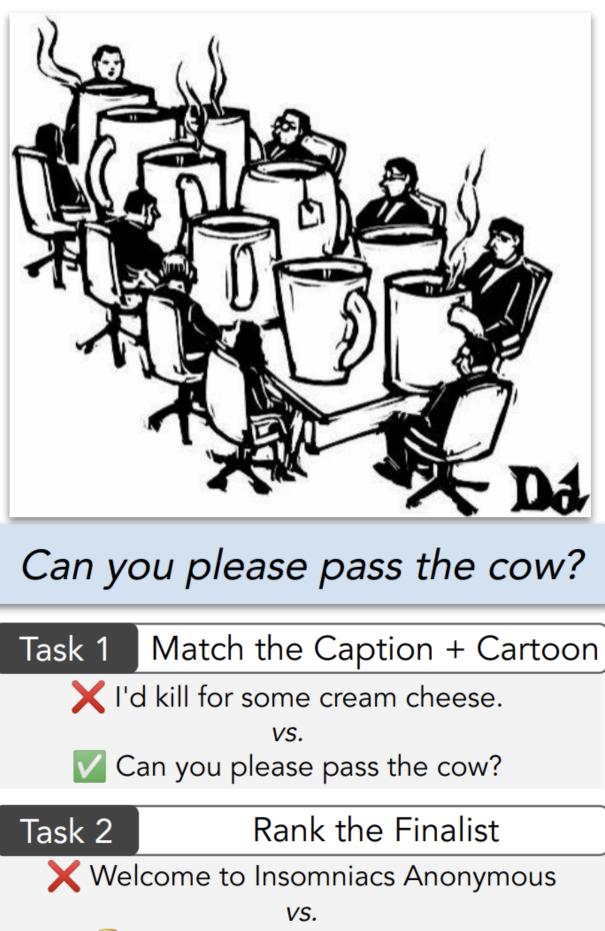
- Q: How many magnets are on the bottom of the fridge?
- A: 5.
- A: 2.
- A: 3. A: 4.

An example of multimodal tasks

[Hessel, Marasović, et al., 2023]

18

An example of multimodal tasks



The cow? Can you please pass the cow?

[Hessel, Marasović, et al., 2023]

Task 3

Explanation Generation

Human-authored:

When drinking coffee or tea, people often add cream, and may ask others to pass it if it's on the other side of a table. But here, the mugs are huge, so instead of asking for a small cup of cream, they are asking for the entire cow, which is the appropriately-sized cream dispenser for these huge drinks.

From Pixels (OFA + T5-11B):

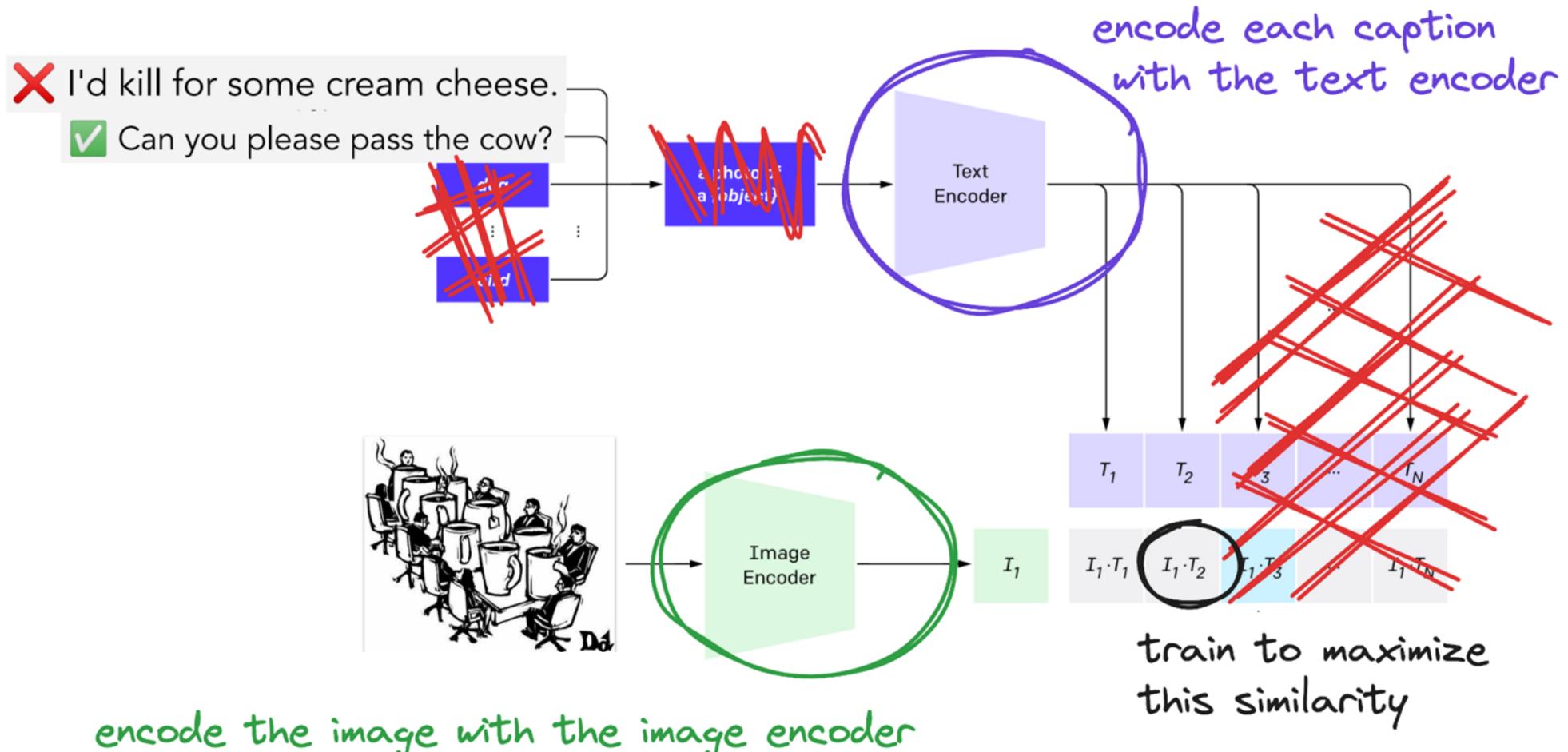
The joke is that the meeting participants are actually sitting on chairs made out of coffee mugs, which is an unlikely location for the discussion. Instead of asking for another mug of coffee, the person at the head of the table simply asks for "the cow", or a coffee machine.

From Description (5-shot GPT 3.5):

"Pass the cow" is an example of a non sequitur, something that looks like a logical thing to say, but doesn't make sense in context. The humor in this cartoon comes from the large size of the coffee mugs: they are so large that they resemble buckets rather than mugs, thus making the request to "pass the cow" almost reasonable.

Simple, yet strong baseline for vision-and-text classification

Can you please pass the cow?



encode the image with the image encoder

Goals of Today's Lecture

Goal: Lean how some LLMs that take more than just text

- Motivation for V&L models
- Vision Transformer
- Classification with Image+Text Input
- **Generation with Image+Text Input**
- Video Processing
- Speech Processing

Not constrained to classification

User What is funny about this image? Describe it panel by panel.

Source: hmmm (Reddit)

Source: OpenAI Blog

GPT-40: Not constrained to classification

er

What is funny about this image? Describ GPT-4

Source: hmmm (Reddit)

The image shows a package for a "Lightning Cable" adapter with three panels.

Panel 1: A smartphone with a VGA connector (a large, blue, 15-pin connector typically used for computer monitors) plugged into its charging port.

Panel 2: The package for the "Lightning Cable" adapter with a picture of a VGA connector on it.

Panel 3: A close-up of the VGA connector with a small Lightning connector (used for charging iPhones and other Apple devices) at the end.

The humor in this image comes from the absurdity of plugging a large, outdated VGA connector into a small, modern smartphone charging port.

Source: OpenAI Blog

Four components of a simple and standard design of combining a language model with a vision encoder

Image encoder:

- Image preprocessing: Turn an image into a sequence of patches Ŷ
- Ŷ embeddings, then transforms them using many self-attention and FF/MLP layers

Cross modal connector

- Ŷ input dimension with an FFNN/MLP
- Initially randomly initialized Ŷ

A pretrained decoder-only Transformer LLM

Prepend projected vision embeddings to the token embeddings Ŷ

A *pretrained* Vision Transformer image encoder that first maps each of image patches into input

A connector that projects the vision embeddings (from e.g. final layer) to the language model's

LLaVA: Visual Instruction Tuning https://llava-vl.github.io/

Strong pretrained vision and language models

- Vision encoder: CLIP-ViT-L/14
- Language model: LLaMA-2, etc.

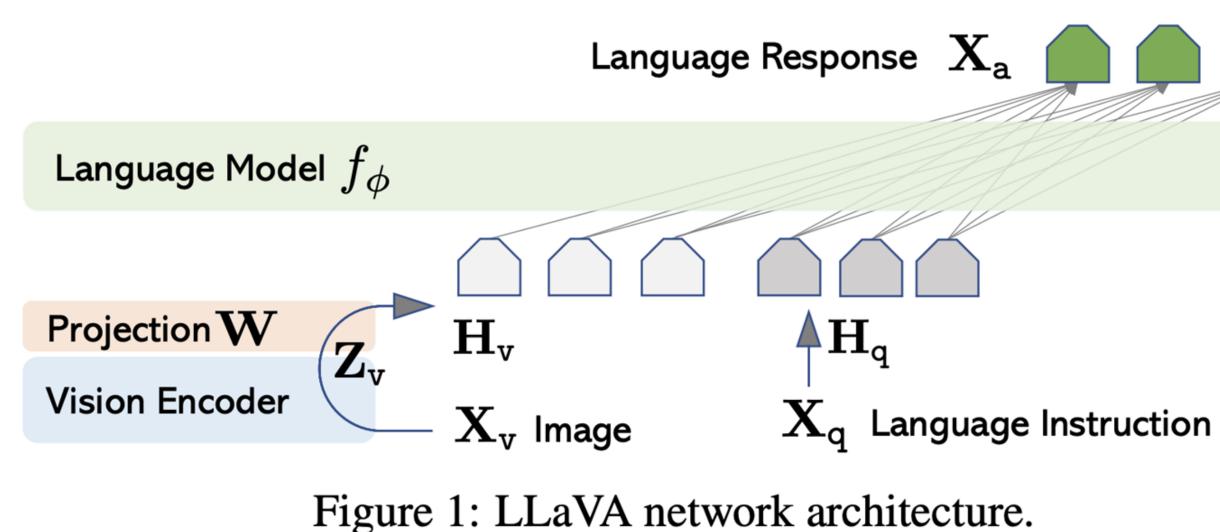
Cross modal connector

Linear projection

Tuning the model for following multimodal instructions

- Use image captions from available datasets
- Prompt text-only GPT-4 to generate (instruction, output) pairs
- **158K** instructions

First tune only the projection, then tune the projection and LM



		VLM		LLM Backbone		Vision Encoder	
Category	Model	Open Weights	Open Data + Code	Open Weights	Open Data + Code	Open Weights	Open Data + Code
Molmo	Molmo-72B	Open	Open	Open	Closed	Open	Closed
	Molmo-7B-D	Open	Open	Open	Closed	Open	Closed
	Molmo-7B-O	Open	Open	Open	Open	Open	Closed
	MolmoE-1B	Open	Open	Open	Open	Open	Closed
API Models	GPT-40	Closed	Closed	Closed	Closed	Closed	Closed
	GPT-4V	Closed	Closed	Closed	Closed	Closed	Closed
	Gemini 1.5 Pro	Closed	Closed	Closed	Closed	Closed	Closed
	Gemini 1.5 Flash	Closed	Closed	Closed	Closed	Closed	Closed
	Claude 3.5 Sonnet	Closed	Closed	Closed	Closed	Closed	Closed
	Claude 3 Opus	Closed	Closed	Closed	Closed	Closed	Closed
	Claude 3 Haiku	Closed	Closed	Closed	Closed	Closed	Closed
Open Weights	Qwen VL2 72B	Open	Closed	Open	Closed	Open	Closed
	Qwen VL2 7B	Open	Closed	Open	Closed	Open	Closed
	Intern VL2 LLAMA 76B	Open	Closed	Open	Closed	Open	Closed
	Intern VL2 8B	Open	Closed	Open	Closed	Open	Closed
	Pixtral 12B	Open	Closed	Open	Closed	Open	Closed
	Phi3.5-Vision 4B	Open	Closed	Open	Closed	Open	Closed
	PaliGemma 3B	Open	Closed	Open	Closed	Open	Closed
Open Weights & Data	LLAVA OneVision 72B	Open	Distilled	Open	Closed	Open	Closed
	LLAVA OneVision 7B	Open	Distilled	Open	Closed	Open	Closed
	Cambrian-134B	Open	Distilled	Open	Closed	Open	Closed
	Cambrian-18B	Open	Distilled	Open	Closed	Open	Closed
	xGen - MM - Interleave 4B	Open	Distilled	Open	Closed	Open	Closed
	LLAVA-1.5 13B	Open	Open	Open	Closed	Open	Closed
	LLAVA-1.5 7B	Open	Open	Open	Closed	Open	Closed

Molmo [Deitke et al., 2024]

Image encoder: OpenAl's ViT-L/14 336px CLIP model

•

Cross modal connector

Linear projection •

Language model: Fully open OLMo-7B-1024, fully open OLMoE-1B-7B, open-weight Qwen2 7B, or open-weight Qwen2 72B

Pretraining: Caption generation using the new PixMo-Cap dataset

Instruction finetuning: PixMo-AskModelAnything, PixMo-Points, PixMo-CapQA, PixMo-Docs, PixMo-Clocks + Academic datasets

https://molmo.allenai.org/blog

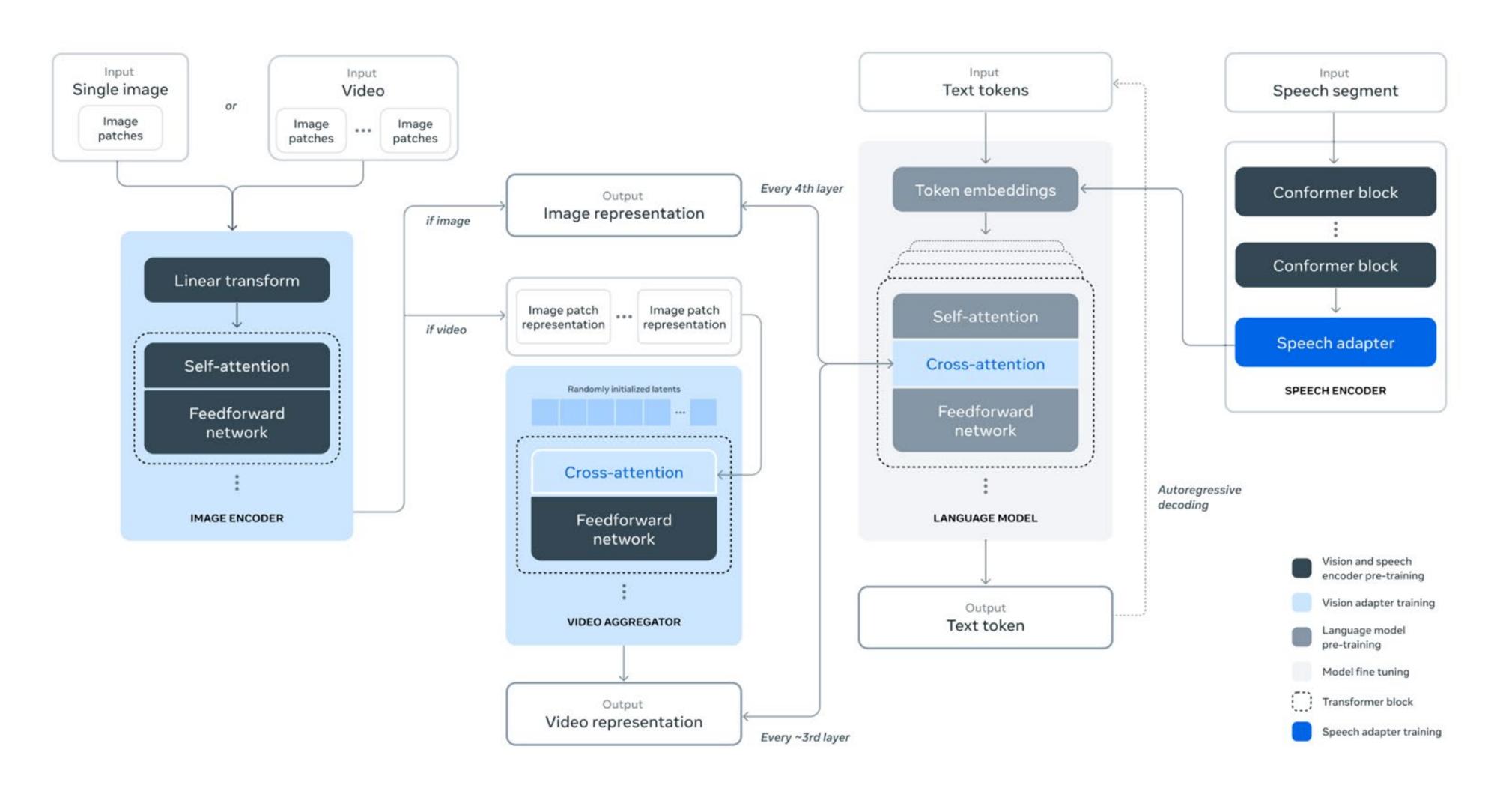
It can be reproduced from scratch as shown by MetaCLIP, but is trained for high resolution images

Goals of Today's Lecture

Goal: Lean how some LLMs that take more than just text

- Motivation for V&L models
- Vision Transformer
- Classification with Image+Text Input
- Generation with Image+Text Input
- **Video Processing**
- Speech Processing

Llama 3.2



Llama 3.2 (cont.)

Image encoder:

- Vision Transformer pretrained from scratch
- 224 x 224 resolution; 14 x 14 patches
- The size of patch embeddings = 7680
- Features from the 4th, 8th, 16th, 24th and 31st layers are also provided in addition to the final layer features

Cross modal connector:

- **Cross-attention**
- Introduce substantial numbers of additional trainable parameters into the model: for Llama 3 405B, the cross-attention layers have $\approx 100B$ parameters

Language model: Llama 3.1

Llama 3.2 – Video processing

Llama 3.2 takes as input up to 64 uniformly sampled frames from a full video

Each frame is processed by the image encoder

Temporal structure in videos through two components:

- Encoded video frames are aggregated by a temporal aggregator which merges 32 1. consecutive frames into one Temporal aggregator = Perceiver resampler [<u>Jaegle et al., 2021</u>] a.
- Extra video cross attention layers are added before every 4th image cross attention layer 2.

Goals of Today's Lecture

Goal: Lean how some LLMs that take more than just text

- Motivation for V&L models
- Vision Transformer
- Classification with Image+Text Input
- Generation with Image+Text Input
- Video Processing
- **Speech Processing**

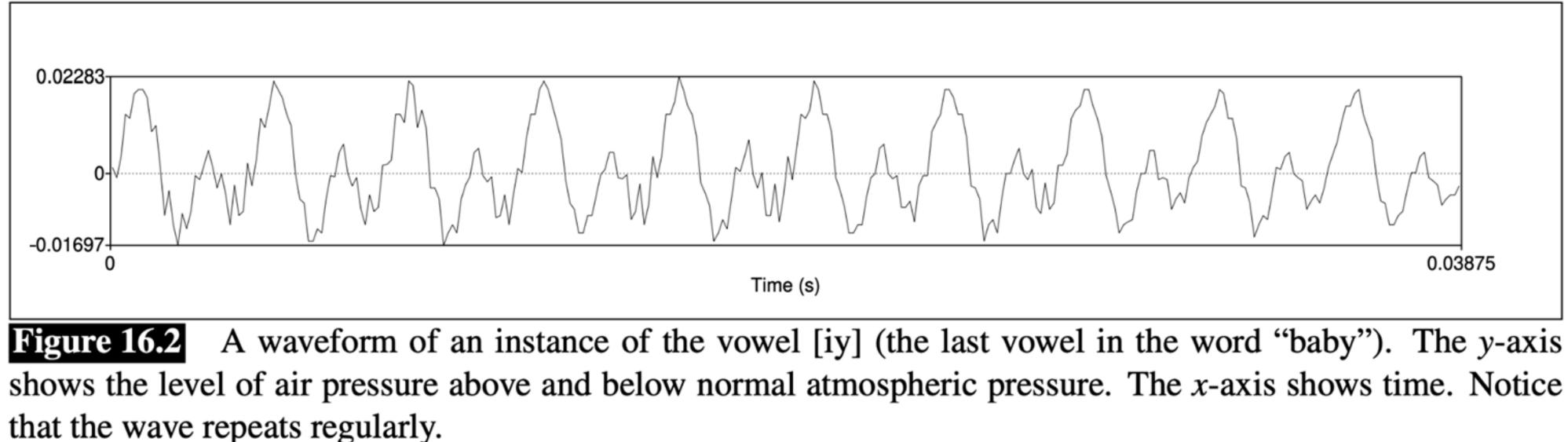
We didn't cover speech in class...

Analog signal

Goal: Raw wavefile \Rightarrow Sequences of log mel spectrum vectors

Raw wavefile contains info about changes in air pressure caused the specific way that air passes through the glottis [the middle region inside your voice box that contains your vocal cords] & out the oral or nasal cavities

The graph measures the amount of **compression** or **rarefaction** (uncompression) of the air molecules



[Jurafsky & Martin Section 16.2]

Sampling and Quantization

Next steps: Transform a waveform, a 2D plot of air pressure changes (y-axis) over time (x-axis) into a sequence of 80-dimensional log Mel spectrum vectors

Sampling:

- kHz)
- Sampling rate: Number of samples/sec (e.g., 16 kHz for high-quality audio) •
- Creates a A 1D array of sampled amplitudes •

Quantization:

- Digital systems work with discrete values rather than continuous ones •
- Represents amplitudes as integers (e.g., 8-bit or 16-bit)
- Reduces continuous signal values into discrete levels

[Jurafsky & Martin Section 16.2]

Turn a waveform into a sequence of amplitude values [loudness] sampled at regular intervals (e.g., 16

Windowing

Speech analyzed in small stationary windows

Assumption: within small time windows, the properties of a speech signal (such as its frequency content) remain relatively constant

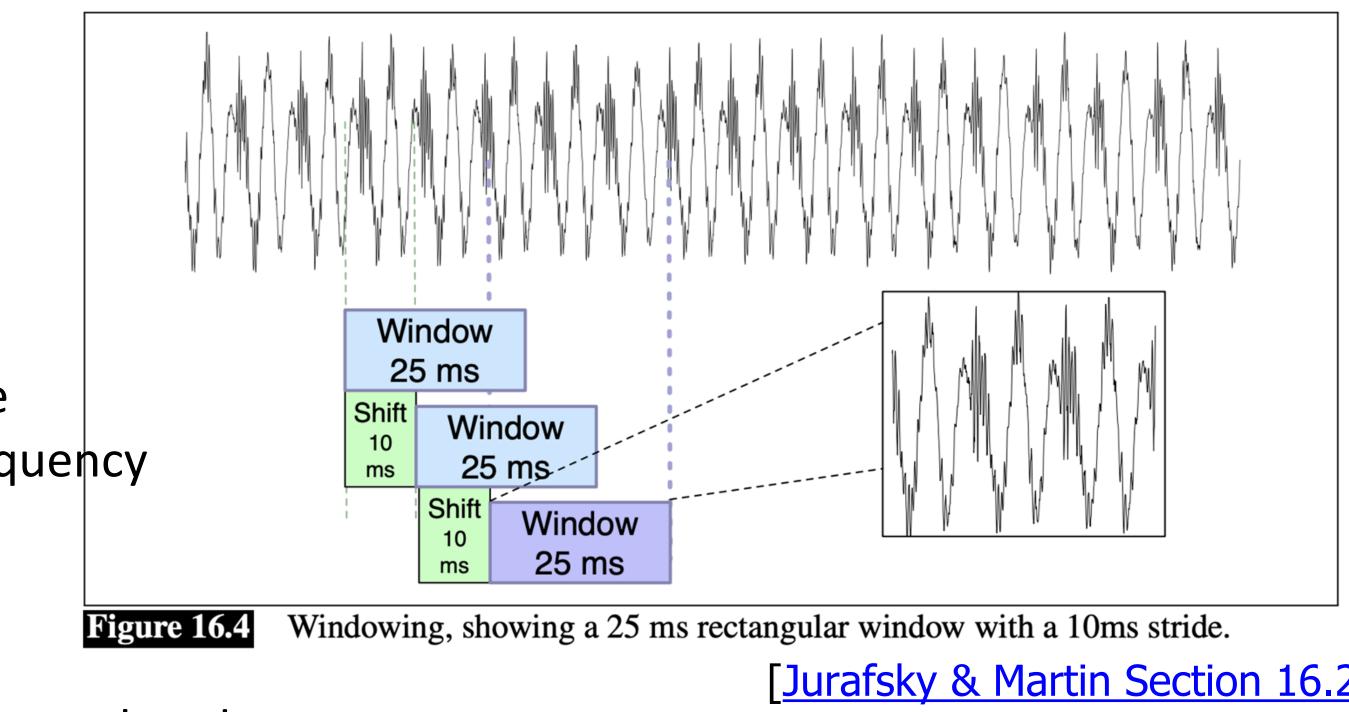
Key parameters:

- Window size (e.g., 25 ms): The duration of the analyzed segment •
- allowed

Window types:

- Rectangular: Abrupt cutoff at edges
- Hamming: Smooth tapering at edges •

Windowing results in a 2D array where each row corresponds to the samples in a window



Frame stride (e.g., 10 ms): The interval at which consecutive windows are started \Rightarrow overlapping analysis

Discrete Fourier Transform (DFT)

Next: Analyze the signal in the frequency domain rather than the time domain

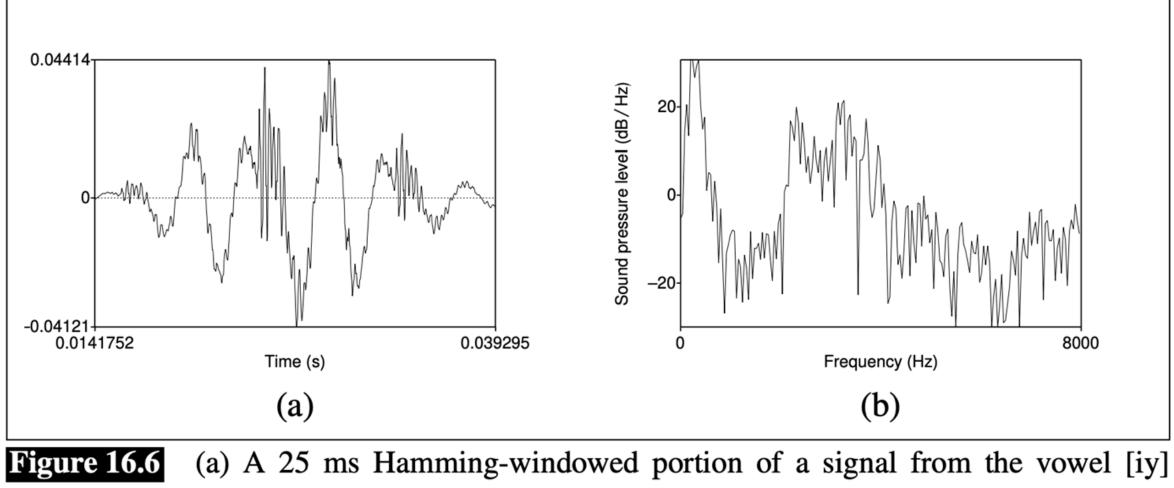
A signal contains energy distributed across various frequencies

band

Fast Fourier Transform (FFT): Efficient computation of DFT for signal analysis

[Jurafsky & Martin Section 16.2]

- Spectral information: The breakdown of how much energy (or power) is present at each frequency



and (b) its spectrum computed by a DFT.

Mel Filter Bank

The results of the FFT tell us the energy at each frequency band

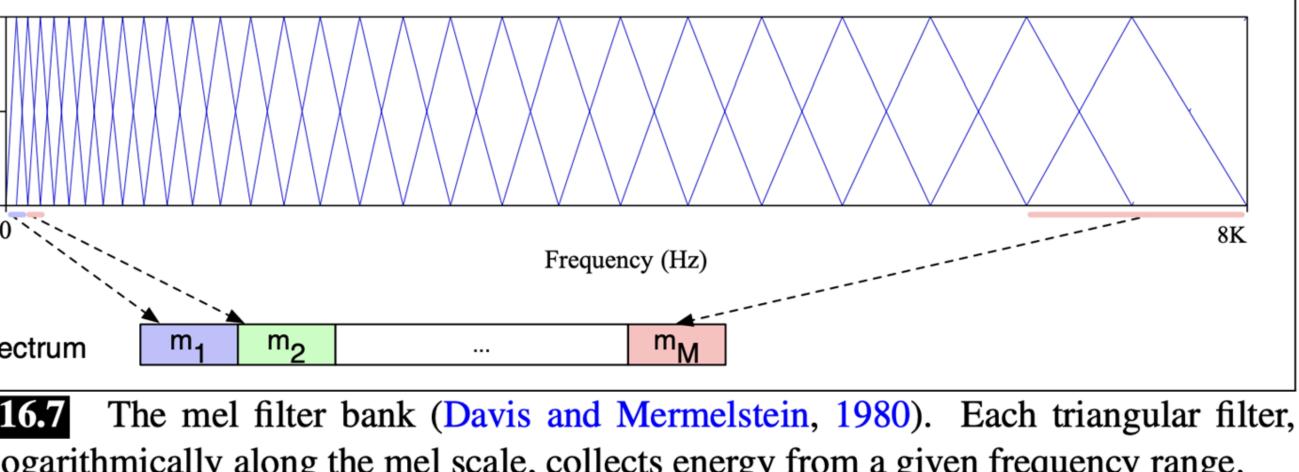
This bias toward low frequencies helps human recognition, since information in low frequencies is • crucial for distinguishing vowels or nasals, while information in high frequencies is less crucial for successful recognition

$$mel(f) = 1127\ln(1 + \frac{f}{700})$$

Amplitude 0.5 mel spectrum **Figure 16.7**

[Jurafsky & Martin Section 16.2]

Human hearing is not equally sensitive at all frequency bands; it is less sensitive at higher frequencies



spaced logarithmically along the mel scale, collects energy from a given frequency range.

Log

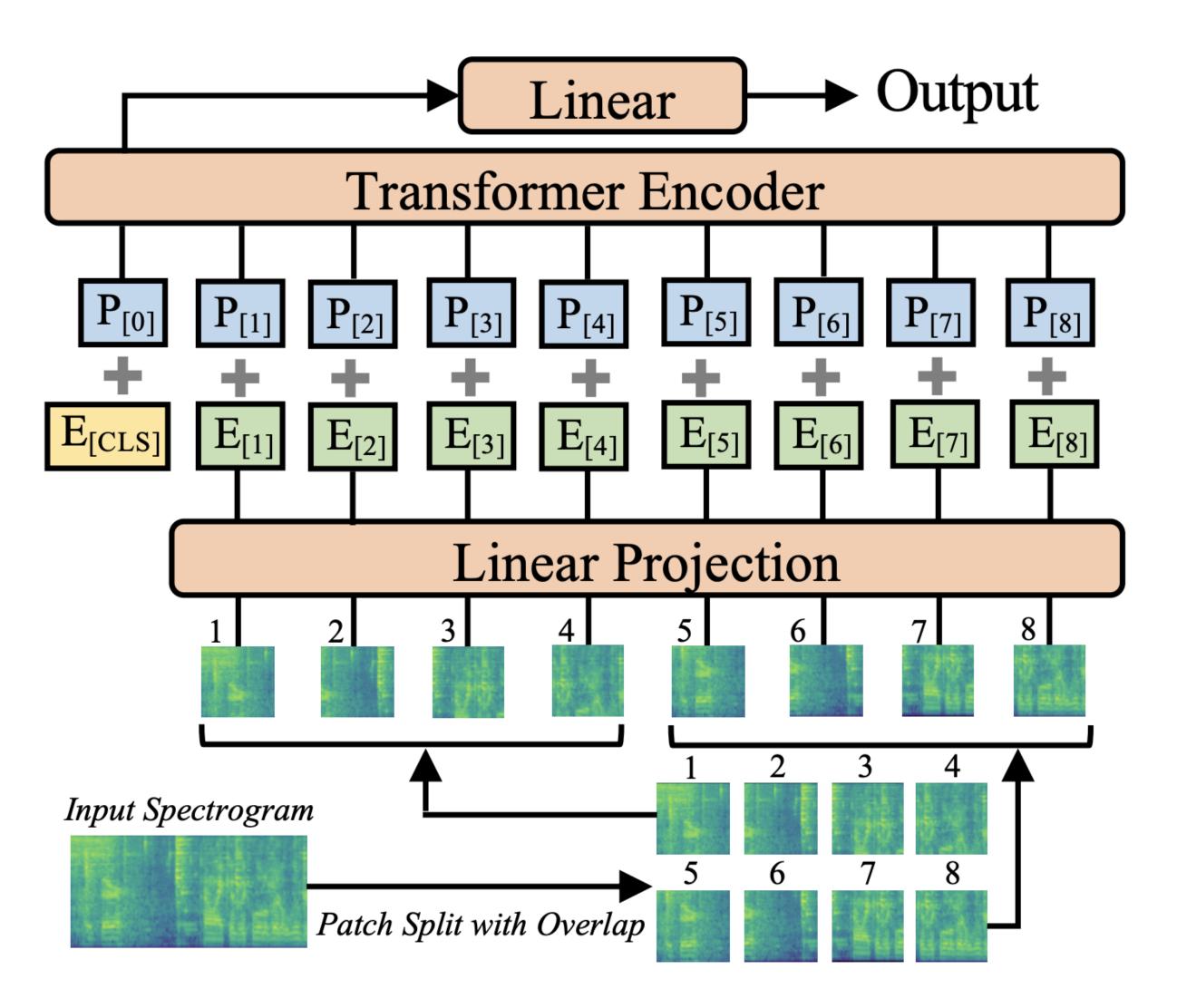
The human response to signal level is logarithmic: Humans are less sensitive to slight differences in amplitude at high amplitudes than at low amplitudes

→ Take the log of each of the mel spectrum values!

Using a log also makes the feature estimates less sensitive to variations in input such as variations due to the speaker's mouth moving closer or further from the microphone

[Jurafsky & Martin Section 16.2]

Audio Spectrogram Transformer [Gong et al., 2021]



Owen2-Audio [Chu et al., 2024]

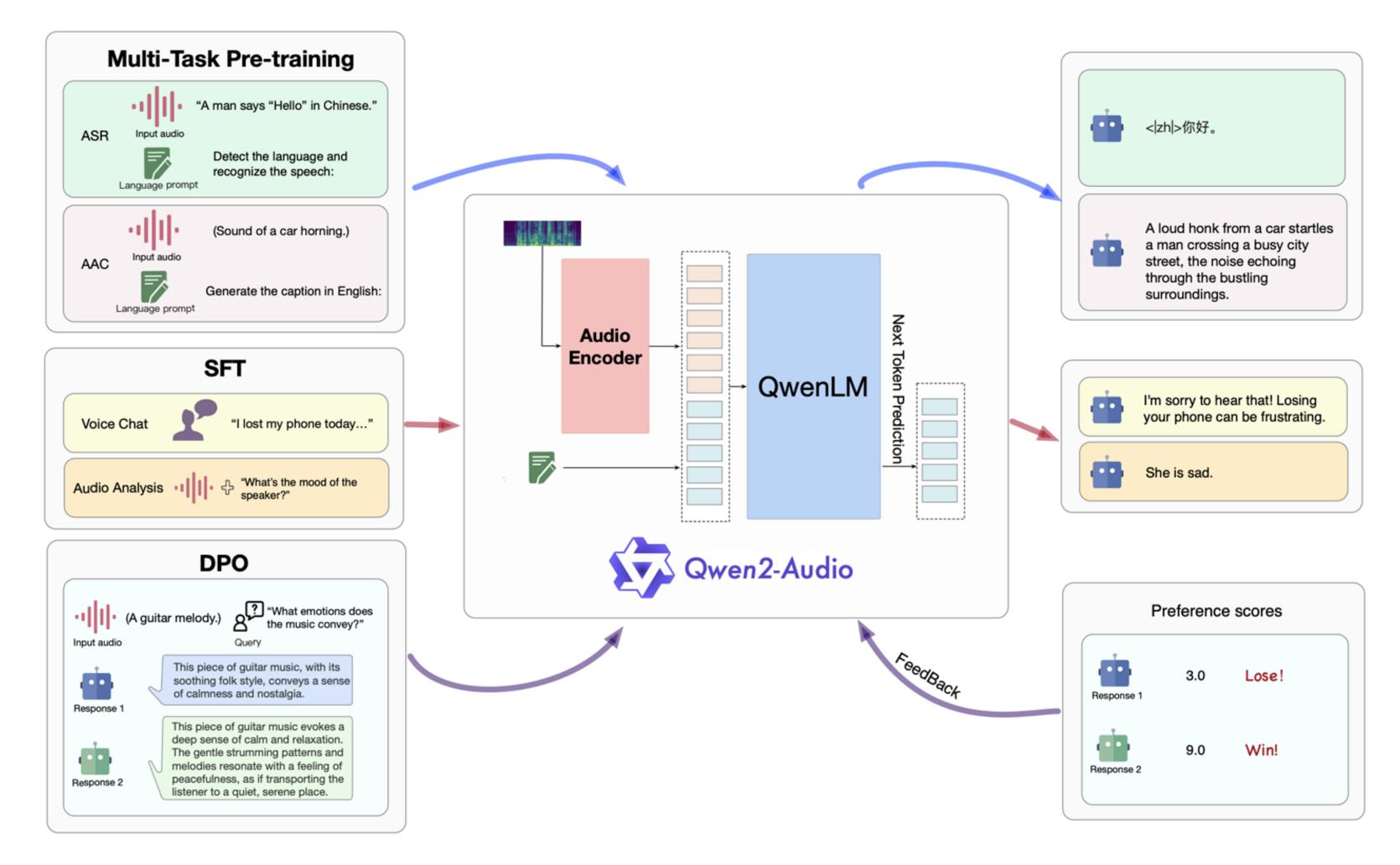


Figure 2: The overview of three-stage training process of Qwen2-Audio.

Multilinguality

Agenda

- Languages of the World and Linguistic Diversity ١.
- Multilingual LLMs II.
 - Pre-training A.
 - Instruction Fine-tuning В.
 - Alignment C.
- Challenges III.
- **Other Directions** IV.

Languages of the World

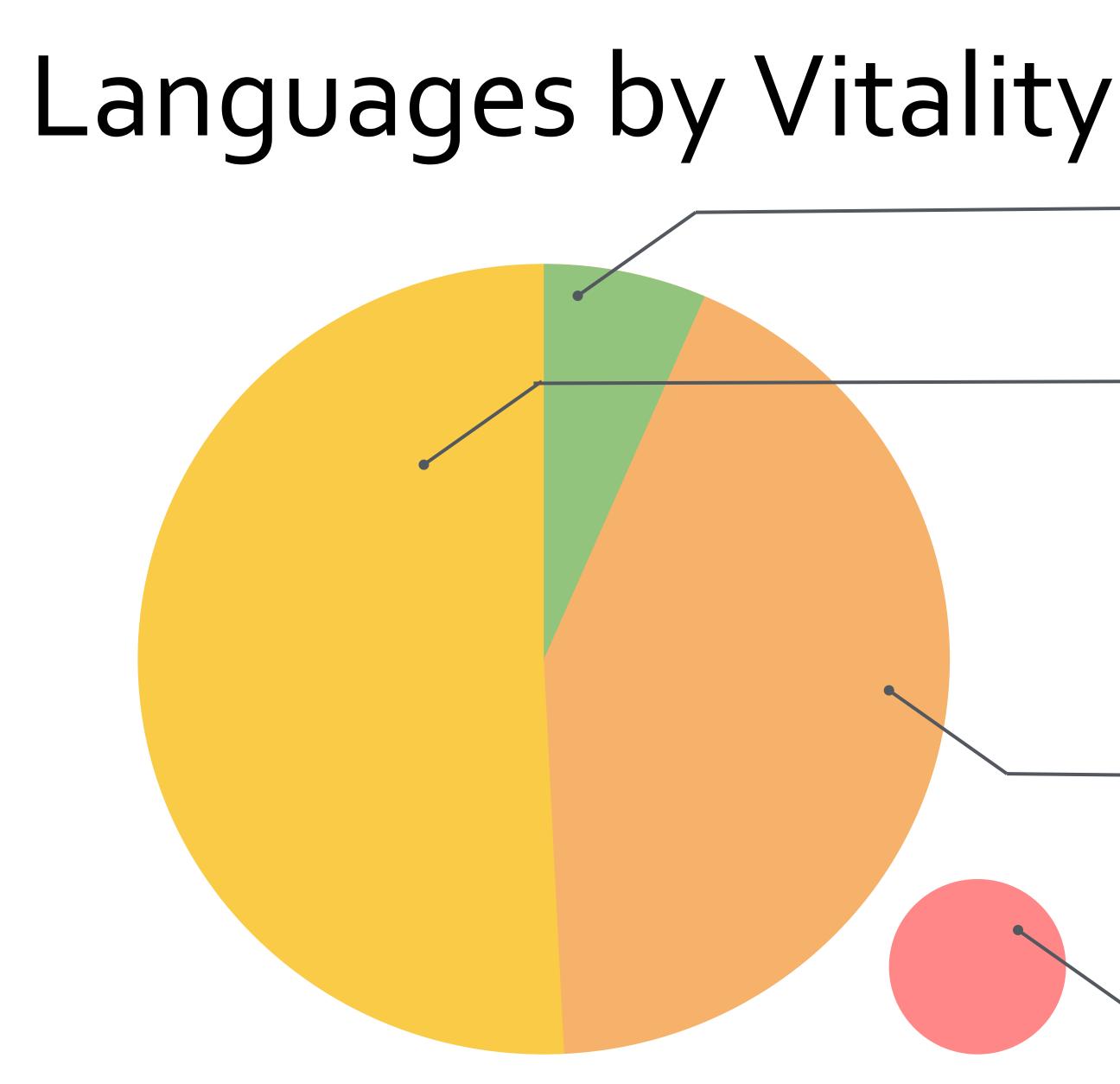
Image from <u>Ethnologue's website</u> ("Eberhard, et al.,. 2024. Ethnologue: Languages of the World. Twenty-seventh edition. Dallas, Texas: SIL International. Online version: http://www.ethnologue.com.")

Languages by Vitality

Image derived from the language vitality data from <u>Ethnologue's website</u> ("Eberhard, et al., 2024. Ethnologue: Languages of the World. Twenty-seventh edition. Dallas, Texas: SIL International.). Image approx. at scale.

~7100 living languages

451 extinct languages: Languages no longer used; no one identifies with the language



492 institutional languages: Sustained by institutions / governments

3593 stable languages: Not sustained by formal institutions; norm at home for children to learn and use the language

3072 endangered languages:

No longer the norm for children to learn and use the language

451 extinct languages:

Languages no longer used; no one identifies with the language

Languages by Vitality

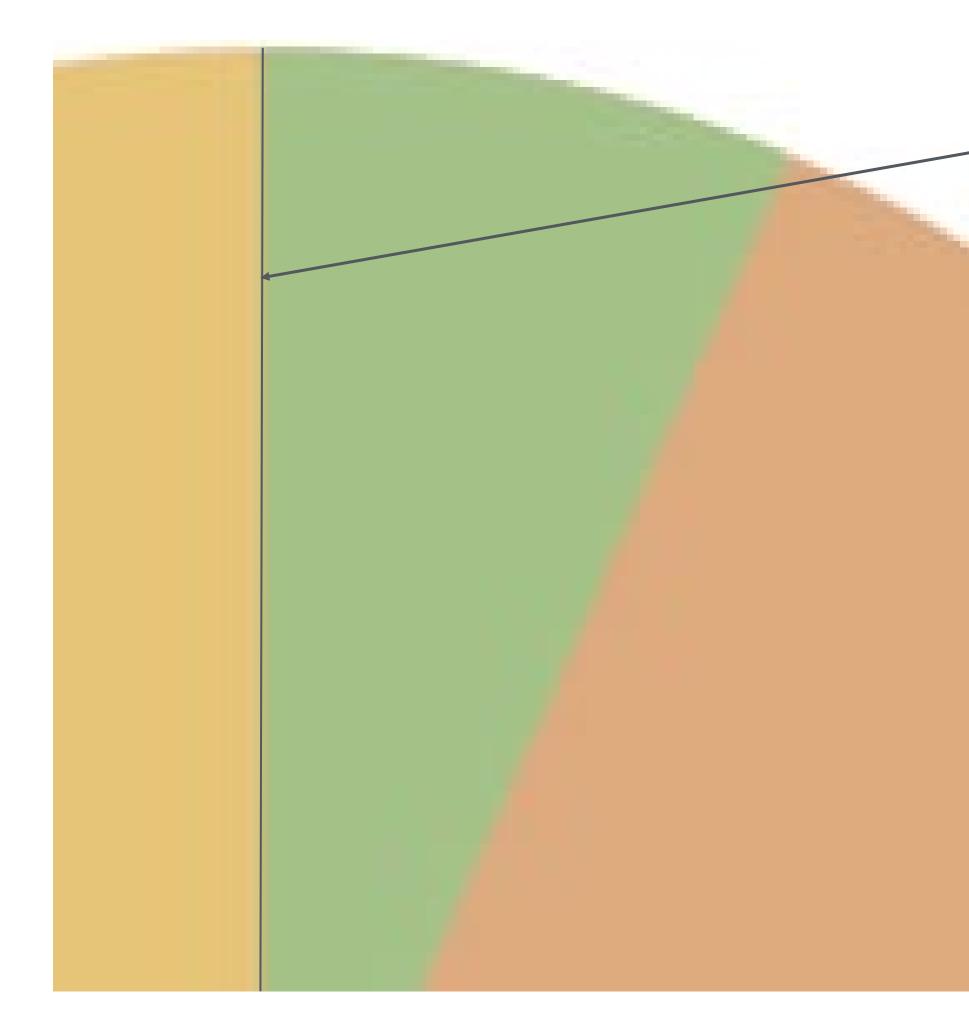
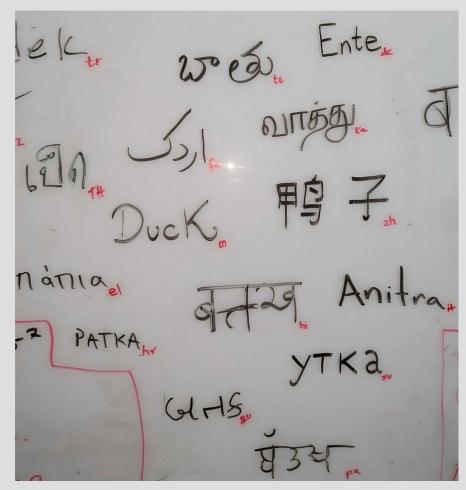


Image derived from the language vitality data from <u>Ethnologue's website</u> ("Eberhard, et al., 2024. Ethnologue: Languages of the World. Twenty-seventh edition. Dallas, Texas: SIL International.). Image approx. at scale.

That thin black line is **English**!

How do Languages Differ?

<u>Scripts:</u>



Semantic Variations:

dara : door (*Farsi*) vs burrow (*Gujarati*) śikśā: education (*Hindi*) vs punishment (*Gujarati*)

Word Order:

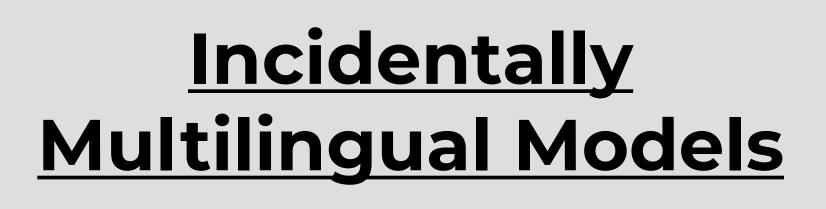
English: I met Jack.(SVO order)Hindi: में जैक से मिला।(SOV order)Filipino: Nakilala ko si Jack.(VSO order)

And many more

Multilingual LLMs

Multilingual LLMs: Overview

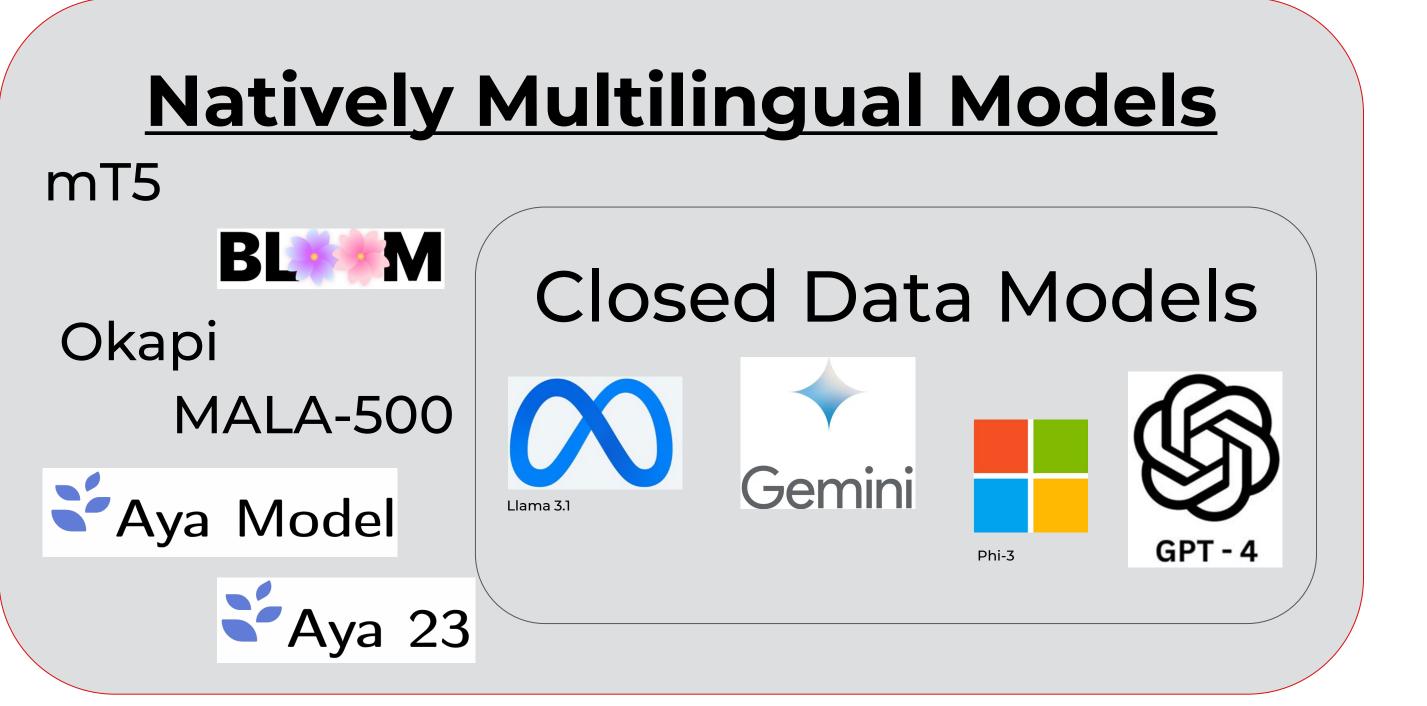
LLMs that support multiple languages Parameters shared across languages



Llama 2

🔿 Meta Al

Trained on a large amount of multilingual data (unlabeled & labeled) Often rely on cross-lingual transfer abilities across languages



Directions of Innovations in Multilingual LLMs

Data

- Methods to efficiently procure labeled & unlabeled data
 - Quality vs Quantity
 trade-off
 - Impact of data diversity
- Alignment data collection strategies

We'll focus on the **Data** direction today!

<u>Infrastructure</u>

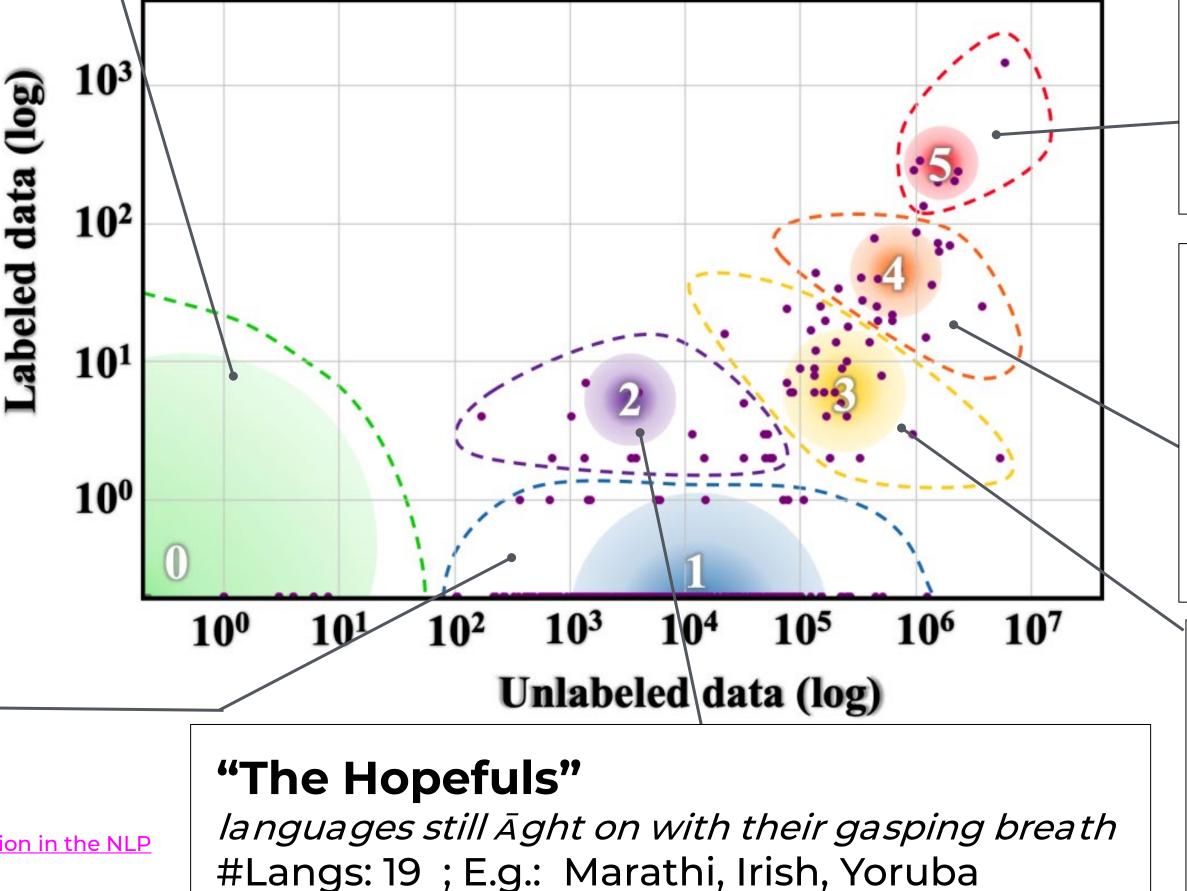
- Breaking the curse of multilinguality (more on this if time permits)
- Extending LLMs to unseen languages
- . Efficient tokenization for
 - low-resource languages

Languages of the World via the Data

_ens

"The Left-Behinds"

Impossible effort required to lift them into digital space #Langs: 2191 E.g.: Warlpiri, Gaelic, Gondi #Speakers: 1.2B



#Speakers: 5.7M

"The Scraping-Bys"

Need solid, organized movement that increases awareness #Langs: 222 E.g.: Nepali, Gujarati, Armenian #Speakers: 30M

Figure from The State and Fate of Linguistic Diversity and Inclusion in the NLP World (Joshi et al., ACL 2020) For language categorization of your language see: https://microsoft.github.io/linguisticdiversity/assets/lang2tax.txt

"The Winners"

the quintessential rich?resource languages #Langs: 7 E.g.: English, German, French #Speakers: 2.5B

"The Underdogs"

dedicated NLP communities conducting research on these languages #Langs: 18 E.g.: Russian, Dutch, Korean #Speakers: 2.2B

"The Rising Stars"

let down by insufficient efforts in labeled data collection #Langs: 28 E.g.: Hebrew, Ukrainian, Urdu 4Cranalizaria, 10D

The Multilingual LLM Pipeline

Data

Model

Unlabeled Multilingual Corpus e.g.:(<*natural_language*>)

> Language Modeling (LM) Objective

Pre-trained LLM

Pre-training Phase

Labeled Instruction Pair Dataset e.g.:(<prompt[completion>)

LM Objective

Alignment Dataset e.g.:(<prompt[completion^{*}, *completion*[?]>)

e.g.: PPO, DPO, etc.

Supervised/Instructi on Fine-tuned LLM

Instruction Finetuning Phase

Preference Aligned LLM

Preference Tuning Phase

Multilingual Pre-training

Multilingual Pre-training: mC4

Multilingual C4 (mC4)^[1] [6.6B pages, 6.3T tokens] • C4: Colossal Clean Crawled Corpus^[2]

- (April 2019)
 - detector
- Use 71 snapshots of Common Crawl

Models trained on mC4: mT5, mTo, Aya-101

0

[1] mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer (Xue et al., NAACL 2021) [2] Exploring the limits of transfer learning with a unified text-to-text transformer. (Raffel et al.,, JMLR 2020) * - <u>https://pypi.org/project/langdetect/</u> (Only pages with a probability 99% or higher of being English were considered)

\$ - https://github.com/google/cld3 (Pages with a language confidence of below 70% were discarded)

Cleaned version of the Common Crawl's snapshot of the internet

Filtered for pages predominantly English as per a language

```
Supports 101 languages (with 6 languages in two scripts)
Identified using the <u>cld3</u> language detector
Other filters: length, deduplication, profanity, etc.
```

Multilingual Pre-training: mC4 Multilingual C4 (mC4)^[1] [6.6B pages, 6.3T tokens]

C4: Colossal Clean Crawled Corpus^[2]

Cleaned version of the Common Crawl's snapshot of the internet

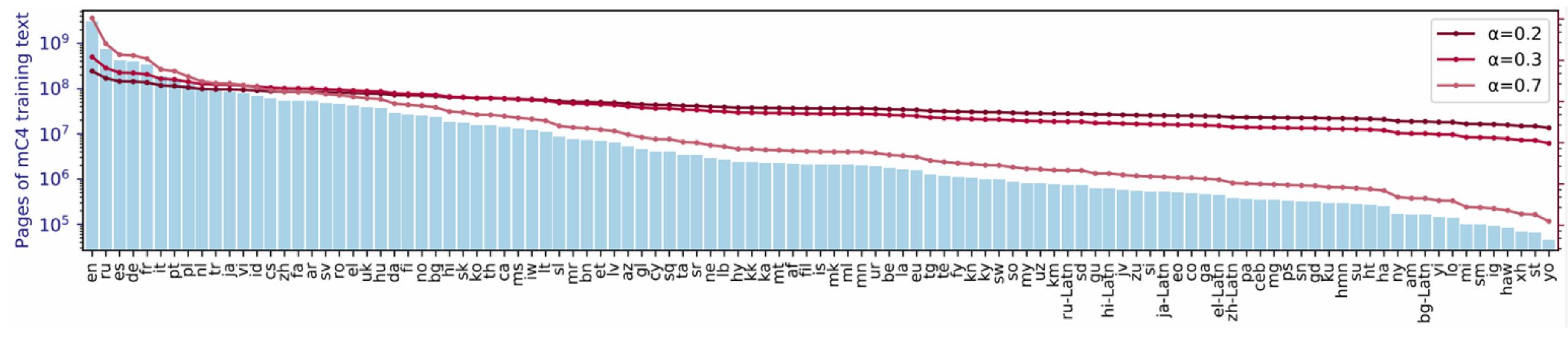


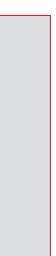
Figure 1: Page counts per language in mC4 (left axis) from mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer (Xue et al., NAACL 2021)

Sampling affects model performance^{*}: •

[2] <u>mT5:</u> ' - <u>https</u> \$ - <u>https</u>

[1] Explor

If low-resource languages are highly sampled too often, the model may overfit If high-resource languages are not trained on enough, the model will underfit



Multilingual Pre-training: Glot500-c Glot500-c^[1] [1.5B sentences, 600

GB]

Subset of **Glot2000-c** that covers 2266 languages:

- Diverse data sources: religious texts, news articles, scientific papers, etc.
- Several filters:
 - Chunk-level filters^{\$}
 - Corpus-level filters

Set of **511 languages*** with > 30k chunks

Models trained on Glot500-c: Glot500-m, MALA-500

[1] <u>Glot500: Scaling Multilingual Corpora and Language Models to 500 Languages</u> (Imani et al., ACL 2023) * - They cover 30 scripts. They also count a distinct language-script pair as a separate pair BLOOM, BLOOMZ, etc.

SF1 Character repetition. If the ratio of repeated characters is too high, it is likely that the sentence has not enough textual content.

SF2 Word repetition. A high ratio of repeated words indicates non-useful repetitive content.

SF3 Special characters. Sentences with a high ratio of special characters are likely to be crawling artifacts or computer code.

SF4 Insufficient number of words. Since training language models requires enough context, very small chunks of text are not useful.

SF5 Deduplication. If two sentences are identical after eliminating punctuation and white space, one is removed.

Multilingual Pre-training: Glot500-c Glot500-c^[1] [1.5B sentences, 600

GB]

Subset of **Glot2000-c** that covers 2266 languages:

- Diverse data sources: religious texts, news articles, scientific papers, etc.
- Several filters:
 - Chunk-level filters

. Corpus-level filters Set of **511 languages**^{*} with > 30k chunks

Models trained on Glot500-c: Glot500-m, MALA-500

[1] <u>Glot500: Scaling Multilingual Corpora and Language Models to 500 Languages</u> (Imani et al., ACL 2023) * - They cover 30 scripts. They also count a distinct language-script pair as a separate pair

Corpus-level filters detect if the corpus of a language-script is noisy; e.g., the corpus is in another language or consists of non-meaningful content such as tabular data. We employ filters CF1 and CF2.

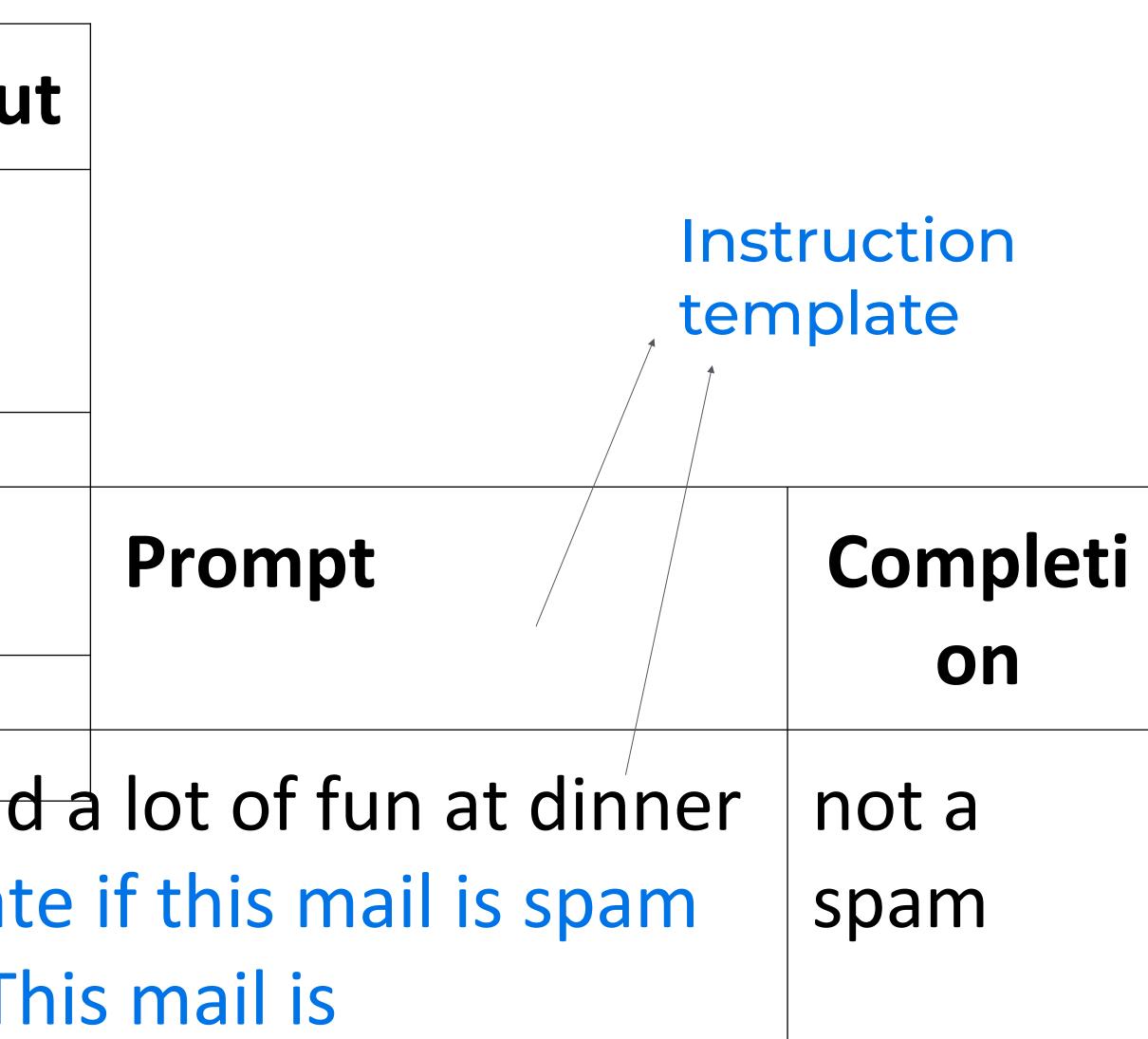
CF1 In case of **mismatch between language** and script, the corpus is removed; e.g., Chinese written in Arabic is unlikely to be Chinese.

CF2 Perplexity mismatch. For each languagescript L1, we find its closest language-script L2: the language-script with the lowest perplexity divergence (§3.3). If L1 and L2 are not in the same typological family, we check L1/L2 manually and take appropriate action such as removing the corpus (e.g., if it is actually English) or correcting the ISO code assigned to the corpus.

Multilingual Instruction Fine-tuning

Template-based

Input		Outpu
Jim, I had a lot of fun a dinner	Not spam	
Congratulations! You just won		Spam
	•••	m, I had Indicat



Template-based

- •
- Instructions can be English or multilingual
- Easy to scale •
- Low in diversity
- Datasets

0

instructions

xP3 and xP3mt^[2]: 16 task types, 46 languages translated version

Convert existing multilingual datasets to prompt-completion pairs

Supernatural Instructions^[1]: 76 task types, 55 languages, English

xP3 has English instructions while xP3mt is its machine-

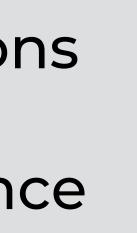
Do Translated Instructions over English Ones Help?

	- Task	Prompt	BLOOMZ	Average a BLOOMZ-MT	ccuracy mT0-13B	mT0-13B-MT	Trained on xP3 (English-only)
Unseen Tasks	XNLI	EN MT HT	52.99 37.56 40.4	49.01 41.16 43.88	48.24 39.31 44.95	51.29 41.66 46.87	
	XCOPA	EN MT	72.52 70.04	73.24 71.84	81.4 81.16	80.36 79.64	
	XStoryCloze	EN MT	81.73 80.89	81.39 81.76	81.99 83.37	82.3 82.86	
	XWinograd	EN MT	60.07 58.48	59.15 60.14	70.49 66.89	73.24 72.33	ained on xP3mt

Table 1: Comparison between EN (English), MT (machine-translated) and HT (human-translated) prompts for 176B BLOOMZ and 13B mT0 models finetuned on either only English or English and machine-translated multilingual prompts (-MT).

Table from Crosslingual generalization through multitask finetuning (Muennighoff et al., ACL 2023)

Translated instructions usually result in improved performance



Template-based

- Instructions can be English or multilingual
- Easy to scale

0

0

0

- Low in diversity
 - Supernatural Instructions^[1]: 55 languages, 76 task types, English instructions xP3 and xP3mt^[2]: 46 languages, 13 task types
 - **xP3** has English instructions while **xP3mt** is its machine-translated version
 - xP3x^[3]: xP3 extended to 277 languages, 16 task types
 - Pruned through a human-auditing process
 - Aya Collection^[4]: 74 languages, 14 task types, Human-written multilingual instructions 0 and more ...

[1] Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks (Wang et al., EMNLP 2022) (largely collected via class-sourcing and public invitation) [2] <u>Crosslingual generalization through multitask finetuning</u> (Muennighoff et al., ACL 2023) (xP3mt translated using Google Translate API) [3] Aya Model: An Instruction Finetuned Open-Access Multilingual Language Model (Üstün et al., ACL 2024) [4] Ava Dataset: An Open-Access Collection for Multilingual Instruction Tuning (Singh et al., ACL 2024)

Convert existing multilingual datasets to prompt-completion pairs

Translation-based

- Templates lack diversity •
- Translate diverse English instructions into other languages Popular machine translation models^[1,2] to the rescue! • Bottleneck?
 - Translation quality in lower resourced languages Introduction of translation artefacts known as translationese
- Datasets:
 - Aya Collection^[3]: 101 languages, 19 datasets
 - - prompts
 - Translate prompt-completion pairs using NLLB

[1] <u>Google Translate API</u>

[2] No language left behind: Scaling human-centered machine translation (NLLB-Team., 2022)

[3] Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning (Singh et al., ACL 2024) [4] Aya Model: An Instruction Finetuned Open-Access Multilingual Language Model (Üstün et al., ACL 2024)

Diverse sources: xP3, Flan Collection, Dolly, etc.; Translated using NLLB^[1] ShareGPT-Command^[4]: 93 languages ShareGPT: Synthetic English completions from Command for human

Human Annotations

- . Gold standard
- Expensive to collect
 - platforms
 - **Sociological factors:**
 - Access to language technology^[1] Dialectical and other biases^[2] Dataset:
 - - **Annotation Platform**

[1] Harnessing the Power of Artificial Intelligence to Vitalize Endangered Indigenous Languages: Technologies and Experiences (Pinhanez et al., 2024) [2] <u>A Survey of Corpora for Germanic Low-Resource Languages and Dialects</u> (Blaschke et al., NoDaLiDa 2023) [3] Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning (Singh et al., ACL 2024)

Technological factors: Support of languages on annotation

Aya Dataset^[3]: 65 languages, 2k contributors across 110 countries Created a multi-platform Annotation platform - Aya

Instances human annotated, re-annotated & feedback curated Implement leaderboarding via Aya Score to boost quality

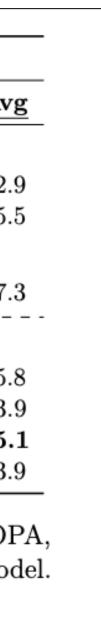
Which Approach is the Best?

	Human Annot.		Templai	ſΈ	TRANSLATION		
Weighting name	Aya	Aya	xP3x	Data	Aya	ShareGPT-	
	Dataset	Templates		Provenance	Translations	Command	
Human Annot. Heavy	25	4	20	6	30	15	
Translation Heavy	10	1.5	15	3.5	47.5	22.5	
Template Heavy	20	10	30	10	20	10	

			Held out tasks (Accuracy %)						
Model	Base Model	IFT Mixture	XCOPA	XNLI	XSC	XWG	Avg		
46 LANGUAGES									
мТ0	mT5~13B	xP3	75.6	55.3	87.2	73.6	72.9		
BLOOMZ	BLOOM 176B	xP3	64.3	52.0	82.6	63.3	65.5		
52 LANGUAGES									
Bactrian-X 13B	Llama 13B	Bactrian-X	52.4	34.5	51.8	50.5	47.3		
101 LANGUAGES									
мТ0х	mT5~13B	xP3x	71.7	45.9	85.1	60.6	65.8		
$\mathbf{Aya}\ (\mathtt{human-anno-heavy})$	mT5~13B	All Mixture	76.5	59.2	89.3	70.6	73.9		
Aya (template-heavy)	mT5~13B	All Mixture	77.3	58.3	91.2	73.7	75.		
★Aya (translation-heavy)	mT5~13B	All Mixture	76.7	58.3	90.0	70.7	73.9		

Table 5: Results for held-out task evaluation. Results are averaged across all splits of XCOPA, XNLI, XStoryCloze, and XWinoGrad. *Aya (translation-heavy) is used as the final Aya model. See § 5.6 for detailed analysis.

Tables from Aya Model: An Instruction Finetuned Open-Access Multilingual Language Model (Üstün et al., ACL 2024)



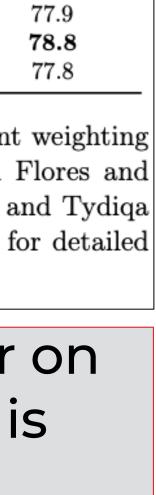
Aya-101 outperforms all other contemporary models (even BLOOMZ 176B) Template-heavy seems to be the best finetuning mixture

Which Approach is the Best?

	Human Annot.		Templai	ſΈ	TRANSLATION		
Weighting name	Aya Dataset	Aya Templates	xP3x	Data Provenance	Aya Translations	ShareGPT- Command	
Human Annot. Heavy	25	4	20	6	30	15	
Translation Heavy	10	1.5	15	3.5	47.5	22.5	
Template Heavy	20	10	30	10	20	10	

			TT -1	Held out tasks (Accuracy %)								Generative Tasks	
			Hele	d out tas	sks (Ace		/	Model	IFT Mixture	FLORES-	-200 (spBleu)	XLSum (RougeLsum)	Tydi-QA (F1)
Model	Base Model	IFT Mixture	XCOPA	XNLI	XSC	XWG	$\underline{\mathbf{Avg}}$	101 LANGUAGES		$X \rightarrow En$	$En \rightarrow X$, , ,	
46 LANGUAGES								мТ0х	xP3x	20.2	14.5	21.4	76.1
мТ0	mT5~13B	xP3	75.6	55.3	87.2	73.6	72.9	Aya (human-anno-heavy)	All Mixture	25.1	18.9	22.2	77.9
BLOOMZ	BLOOM 176B	xP3	64.3	52.0	82.6	63.3	65.5	Aya (templated-heavy)	All Mixture	25.0	18.6	23.2	78.8
52 LANGUAGES								*Aya (translation-heavy)	All Mixture	29.1	19.0	22.0	77.8
BACTRIAN-X 13B	Llama 13B	Bactrian-X	52.4	34.5	51.8	50.5	47.3	Table 7: Generative tasks'	results for m	TOx and A	Ava model v	variants based on diff	erent weighting
101 LANGUAGES								ablations. Here the trans			•		
мТ0х	mT5~13B	xP3x	71.7	45.9	85.1	60.6	65.8	the template-heavy weigh		•	0	· ·	
$\mathbf{Aya}\ (\mathtt{human-anno-heavy})$	mT5~13B	All Mixture	76.5	59.2	89.3	70.6	73.9	respectively. *Aya (trans	0	0	0		v 1
Aya (template-heavy)	mT5~13B	All Mixture	77.3	58.3	91.2	73.7	75.1	analysis.		, , , , , , , , , ,			
$\star \mathbf{Aya}\;(\texttt{translation-heavy})$	mT5~13B	All Mixture	76.7	58.3	90.0	70.7	73.9	anary 515.					
Table 5: Results for held-ou XNLI, XStoryCloze, and XW See § 5.6 for detailed analysis	inoGrad. *Aya		0		-					-	•	orms bett olate-heav	

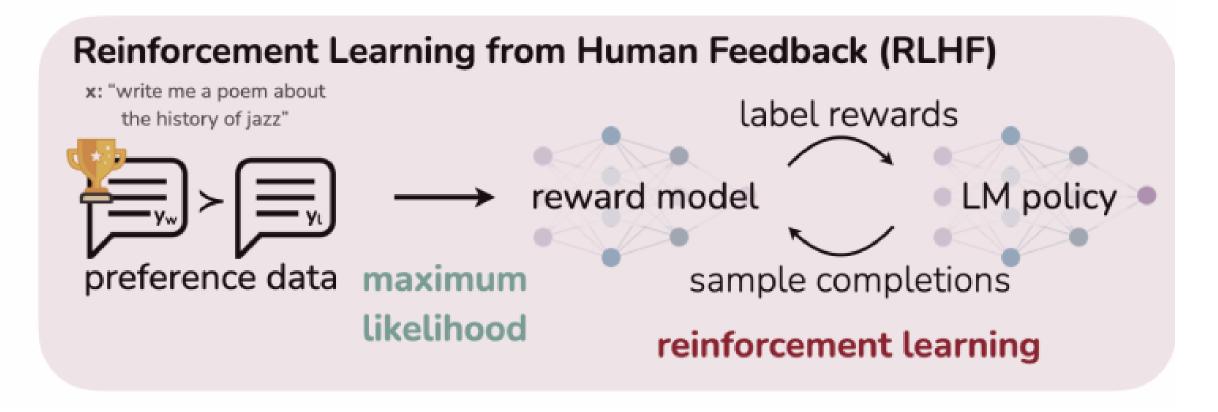
Tables from Aya Model: An Instruction Finetuned Open-Access Multilingual Language Model (Üstün et al., ACL 2024)

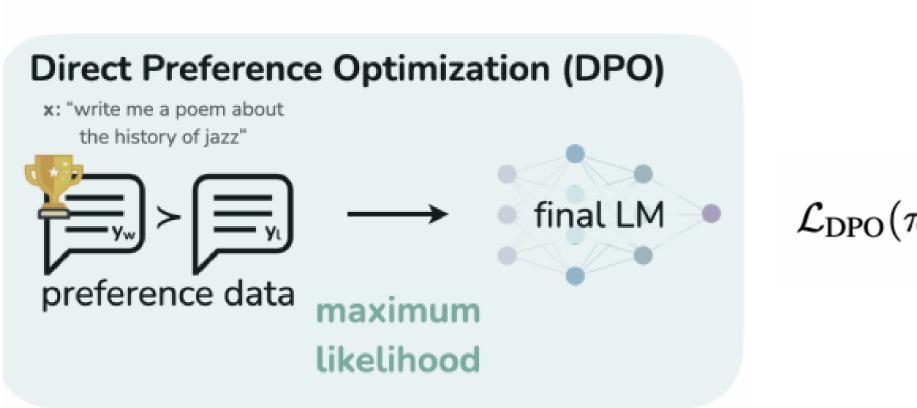


better on other generative tasks

Multilingual Alignment

Online vs Offline Alignment Methods



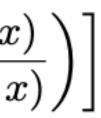


$$\mathcal{L}_R(r_\phi, \mathcal{D}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma(r_\phi(x, y_w) - r_\phi(x, y_l)) \right]$$

 $\max_{\pi_{\theta}} \mathbb{E}_{x \sim \mathcal{D}, y \sim \pi_{\theta}(y|x)} \left[r_{\phi}(x, y) \right] - \beta \mathbb{D}_{\mathrm{KL}} \left[\pi_{\theta}(y \mid x) \mid \mid \pi_{\mathrm{ref}}(y \mid x) \right]$

$$\pi_{ heta}; \pi_{ ext{ref}}) = -\mathbb{E}_{(x, y_w, y_l) \sim \mathcal{D}} \left[\log \sigma \left(eta \log rac{\pi_{ heta}(y_w \mid x)}{\pi_{ ext{ref}}(y_w \mid x)} - eta \log rac{\pi_{ heta}(y_l \mid x)}{\pi_{ ext{ref}}(y_l \mid x)}
ight]$$

))



Cross-lingual (X-Lingual) Alignment

- Reward model trained on preference data of language X (source) Applied to preference tune for language Y (target)

Supervised FineTuning

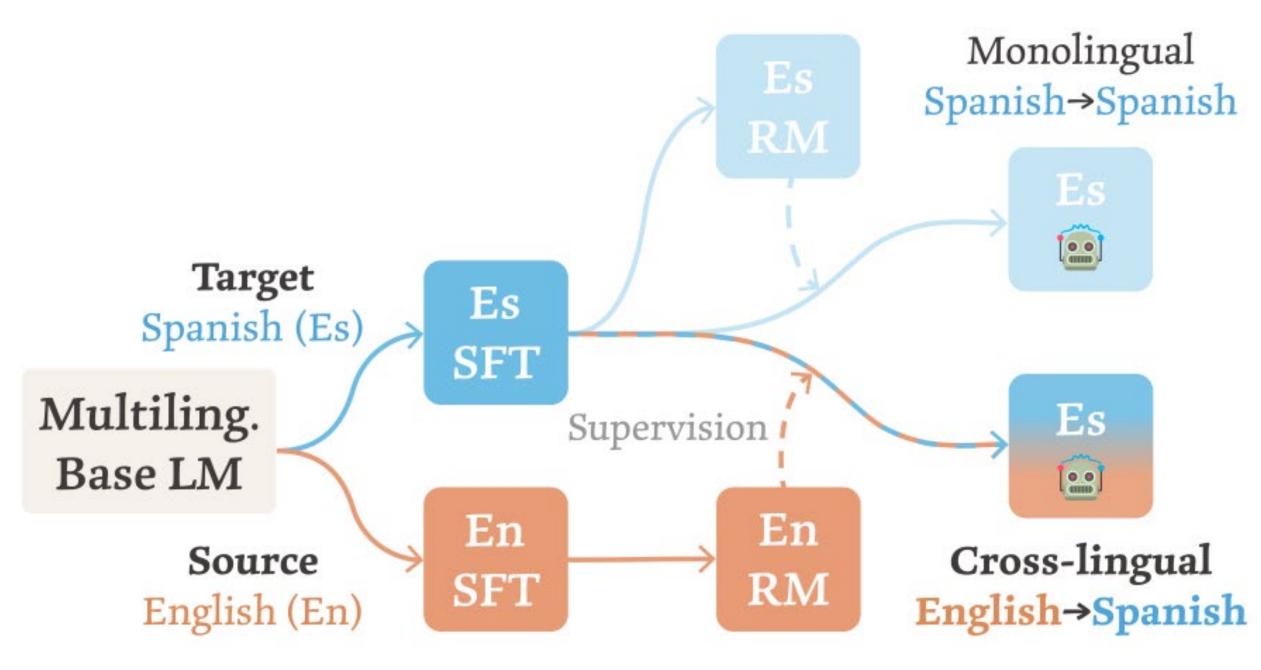
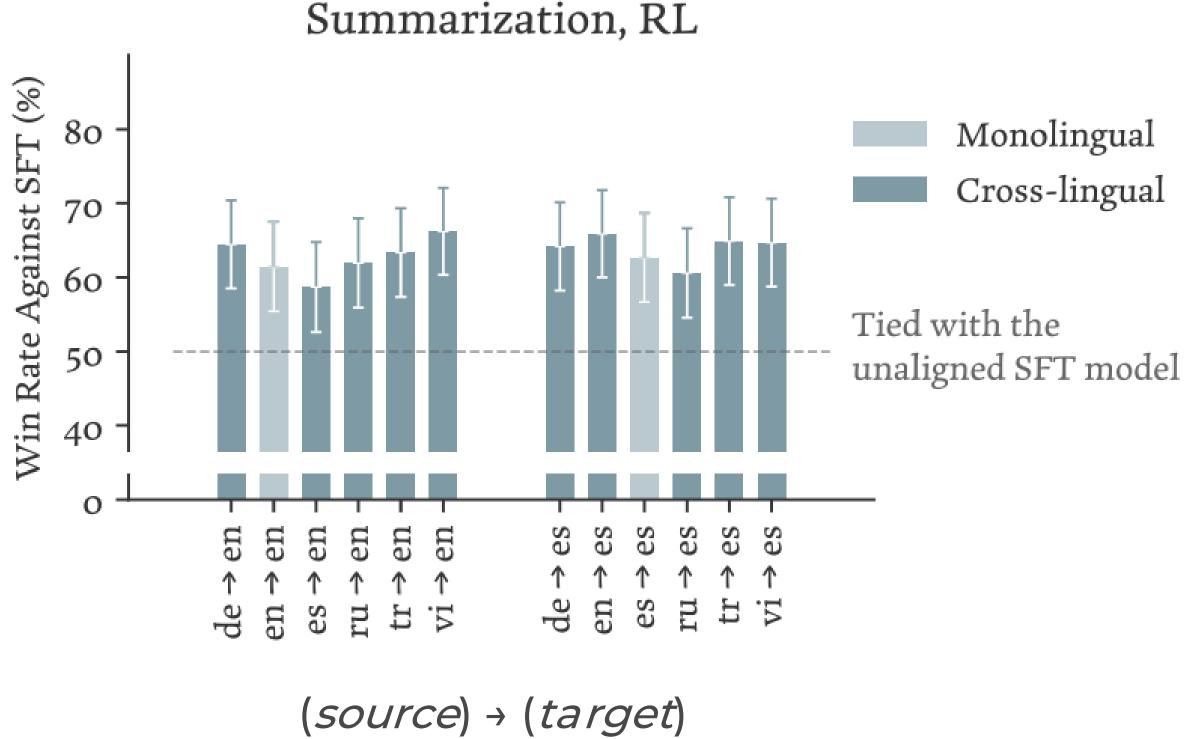


Image from Reuse Your Rewards: Reward Model Transfer for Zero-Shot Cross-Lingual Alignment (Wu et al., 2024)

Reward Reward Modeling Optimization

Cross-lingual Alignment: Does it Work?



Evaluation: Head-to-head win-rates as judged by humans Base SFT model: mT₅-XL **Optimization:** Online (PPO)

Cross-lingual alignment sometimes outperforms in-language alignment

Can't I Just Translate Source Preference Data

Cross-lingual

Src \ Tgt	De	En	Es	Ru	Tr	Vi
De	52.3	50.8	63.0	66.7	63.0	60.4
En	56.4	55.5	66.1	70.7	67.2	63.1
Es	51.9	51.2	62.4	66.0	64.4	57.5
Ru	48.1	46.5	59.2	63.6	59.0	56.3
Tr	53.3	52.9	62.6	66.6	60.4	59.0
Vi	46.5	48.2	60.0	65.6	62.1	58.0

 Table 6: Cross-lingual alignment results using best-of n with n = 64, for the summarization task, measured in win rate (%) against the target-language SFT model as judged by **PaLM-2-L** (Figure 4).

Translation > Cross-lingual

Can't say much!!

Translation

Src \ Tgt	De	En	Es	Ru	Tr	Vi
De	_	50.0	61.9	66.1	66.1	54.6
En	47.9	_	63.3	64.9	64.5	53.1
Es	50.6	52.9	_	64.1	64.5	59.0
Ru	47.4	51.2	60.3	_	63.3	57.7
Tr	50.6	52.5	61.8	65.6	_	50.8
Vi	42.0	50.8	59.1	64.4	63.6	_

Table 17: Alignment quality using RM trained by translating the source language data into the target language using best-of-n with n = 64, for the summarization task, measured in win rate (%) against the target-language SFT model as judged by PaLM-2-L (§5.1).

English benefits from translation Russian (different script) doesn't transfer well

Cross-lingual Alignment with N languages?

- Cross-lingual works with a language (well mostly!!) •
- What if we transfer from more source languages? Testbed with various preference mixtures^[1]: •
- - **En-1:** English-only preference data (50k samples) ML-5: 5 language set (en, vi, de, tr & pt) (50k samples, 10k per language) 0 ML-23: 23 language set (50k samples, ~2.2k per language) 0 ML-23*: 23 language set (230k samples, 10k per language)
- For "*ML*" data:

0

0

- Prompts translated from ShareGPT into 22 languages via NLLB Positive Response: Generated multilingual responses to translated prompts via Command R+^[2]
- Negative Response: Generate English response to English prompt via Command and translate

• Tested with offline and online alignment strategies [] RLHF Can Speak Many Languages: Unlocking Multilingual Preference Optimization for LLMs (Darry et al., 2024) [2] <u>Command R+</u> (supports the 23 languages considered for the experiments)

Does Language Diversity help X-lingual Alignment?

Simulated win-rates with a GPT-4-Turbo ullet

				Win%	${ m English} { m Loss}\%$	Δ W-L%			Avera Win%	ge 23 La: Loss%	$\begin{array}{c} \mathbf{nguages} \\ \Delta \mathbf{W-L\%} \end{array}$
Not	I	DPO	EN-1 ML-5 ML-23 ML-23*	$52.0 \\ 50.5 \\ 44.5 \\ 57.5$	$33.5 \\ 28.5 \\ 36.5 \\ 31.0$	18.5 22.0 8.0 26.5	DPO	EN-1 ML-5 ML-23 ML-23*	$\begin{array}{r} 43.3 \\ 43.8 \\ 47.0 \\ 50.2 \end{array}$	$40.6 \\ 39.1 \\ 37.1 \\ 39.0$	2.7 4.7 9.9 11.2
always for English		RLOO	EN-1 ML-5 ML-23 ML-23*	$47.5 \\ 55.5 \\ 53.0 \\ 53.0$	$38.5 \\ 30.5 \\ 37.0 \\ 35.0$	9.0 25.0 16.0 18.0	RLOO	EN-1 ML-5 ML-23 ML-23*	$46.4 \\ 54.4 \\ 54.0 \\ 53.4$	$38.9 \\ 35.8 \\ 38.0 \\ 37.0$	7.5 18.6 16.0 16.4

Table 3: Open-ended generation (Dolly) win-rates for DPO/RLOO preference optimized Aya models against the original Aya 23 8B on English (left) and averaged over 23 languages (right). We report average win-rates on 23 languages for multiple training data mixtures: EN-1 (English Only), ML-5 (5 Languages), and ML-23 (23 Languages). All the data mixtures consist of 50K total training examples with the exception of ML-23 * , which includes 230K total training examples. We report results for the best checkpoint across 2 epochs.

Almost always on average across multiple languages

Does More Preference Data Help? Simulated win-rates with a GPT-4-Turbo •

		English					Average 23 Languages		
		Win%	$\mathbf{Loss}\%$	ΔW -L%			Win%	$\mathbf{Loss}\%$	ΔW -L%
	EN-1	52.0	33.5	18.5		EN-1	43.3	40.6	2.7
DPO ML-5 ML-23 ML-23*	ML-5	50.5	28.5	22.0	DPO	ML-5	43.8	39.1	4.7
	ML-23	44.5	36.5	8.0		ML-23	47.0	37.1	9.9
	ML-23*	57.5	31.0	26.5		ML-23*	50.2	39.0	11.2
	EN-1	47.5	38.5	9.0		EN-1	46.4	38.9	7.5
RLOO ML	ML-5	55.5	30.5	25.0	RLOO	ML-5	54.4	35.8	18.6
	ML-23	53.0	37.0	16.0		ML-23	54.0	38.0	16.0
	ML-23*	53.0	35.0	18.0		ML-23*	53.4	37.0	16.4

Table 3: Open-ended generation (Dolly) win-rates for DPO/RLOO preference optimized Aya models against the original Aya 23 8B on English (left) and averaged over 23 languages (right). We report average win-rates on 23 languages for multiple training data mixtures: EN-1 (English Only), ML-5 (5 Languages), and ML-23 (23 Languages). All the data mixtures consist of 50K total training examples with the exception of ML-23 * , which includes 230K total training examples. We report results for the best checkpoint across 2 epochs.

Yes, it	
does!	

What about Languages not in Preference Data?

			Unseen Loss %	Langs. Δ W-L%
EN-1	DPO RLOO	$\begin{array}{c} 42.9\\ 46.3\end{array}$	$40.9 \\ 39.3$	$\begin{array}{c} 2.0\\ 7.3\end{array}$
ML-5	DPO RLOO	$43.3 \\ 54.9$	$\begin{array}{c} 39.5\\ 35.5\end{array}$	3.8 19.4

Table 4: Win-rates for the 22 and 18 languages that are not included in the training data ("unseen") for EN-1 and ML-5 respectively. We observe cross-lingual transfer from preference optimization, with an increased degree of transfer enhanced by multilingual training.

Offline vs Online Alignment

			ge 23 La Loss%	$\Delta W-L\%$
DPO	EN-1 ML-5 ML-23 ML-23*	$\begin{array}{r} 43.3 \\ 43.8 \\ 47.0 \\ 50.2 \end{array}$	$40.6 \\ 39.1 \\ 37.1 \\ 39.0$	2.7 4.7 9.9 11.2
RLOO	EN-1 ML-5 ML-23 ML-23*	$46.4 \\ 54.4 \\ 54.0 \\ 53.4$	$38.9 \\ 35.8 \\ 38.0 \\ 37.0$	7.5 18.6 16.0 16.4

is better!

Tables from <u>RLHF Can Speak Many Languages: Unlocking Multilingual Preference Optimization for LLMs</u> (Dang et al., 2024)

			Unseen Loss %	$\begin{array}{c} \mathbf{Langs.} \\ \Delta \mathbf{W-L\%} \end{array}$
EN-1	DPO RLOO	$\begin{array}{c} 42.9\\ 46.3\end{array}$	$40.9 \\ 39.3$	$\begin{array}{c} 2.0\\ 7.3\end{array}$
ML-5	DPO RLOO	$\begin{array}{c} 43.3\\54.9\end{array}$	$\begin{array}{c} 39.5\\ 35.5\end{array}$	$\begin{array}{c} 3.8\\ 19.4\end{array}$

Online method

Challenges

Challenges (The Ones that Made the Cut)

<u>Curse of multilinguality^[1,2]</u>

Packing more languages into a model decreases per language performance

Dialectal Biases^[6]

- Whose dialect matters the most?^[7,8]
- Whose English?^[9,10]

and many more

Cost of Technology^[3]

- . GPT* models are behind paid APIs; cost∝input & generation tokens
- Poor tokenization in non-English languages → more tokens
- . More tokens → more latency & money
- Efforts made but far from parity^[4,5]

[1] <u>Unsupervised Cross-lingual Representation Learning at Scale (Conneau et al., ACL 2020)</u>

[3] <u>Do All Languages Cost the Same? Tokenization in the Era of Commercial Language Models</u> (Ahia et al., EMNLP 2023)

[4] https://cohere.com/blog/command-r-plus-microsoft-azure

[5] https://openai.com/index/hello-gpt-40/

[6] <u>A Survey of Corpora for Germanic Low-Resource Languages and Dialects</u> (Blaschke et al., NoDaLiDa 2023)

[7] <u>Decolonizing NLP for "Low-resource Languages" (Òg</u>únrèmí et al., Al Frameworks Discussion of Abeba Birhane's "Algorithmic Injustice" and Social Impact Articles 2023)

[8] Which Humans? (Atari et al., 2023)

[9] What to do about non-standard (or non-canonical) language in NLP (Plank, KONVENS 2016)

[10] <u>AI makes racist decisions based on dialect</u> (Science, 24 August 2024)

^{[2] &}lt;u>When Is Multilinguality a Curse? Language Modeling for 250 High- and Low-Resource Languages (Chang</u> et al., 2023))

Other Directions

Other Interesting Directions

Multilingual Architectures

- Efficient solutions for the curse of multilinguality
- Adding some language-specific parameters
 - E.g.: Adapters^[1], Cross-lingual expert models^[2]

Tokenization and Vocabulary

Efficient tokenization methods to reduce costs and latency
 E.g.: Vocab budgeting^[6], allocation^[7]

Adapting to a New Language

•

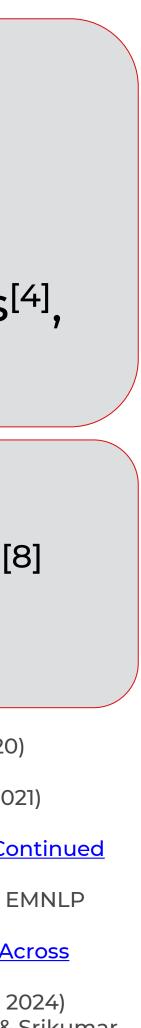
Increasing support of an **N** language multilingual model to **N+K** languages E.g.: Continued pretraining^[3], Adapters^[4], Efficient Initializations^[5]

Data Creation and Verification

 Methods for synthetic data generation^[8] and verification of labeled data^[9]

MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer (Pfeiffer et al., EMNLP 2020)
 Breaking the Curse of Multilinguality with Cross-lingual Expert Language Models (Blevins et al., 2024)
 How to Adapt Your Pretrained Multilingual Model to 1600 Languages (Ebrahimi & Kann, ACL-IJCNLP 2021)
 BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting (Yong et al., ACL 2023)
 OFA: A Framework of Initializing Unseen Subword Embeddings for Efficient Large-scale Multilingual Continued Pretraining (Liu et al., Findings 2024)
 XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models (Liang et al., EMNLP 2023)
 Tokenization Impacts Multilingual Language Modeling: Assessing Vocabulary Allocation and Overlap Across Languages (Limisiewicz et al., Findings 2023)
 Multilingual Arbitrage: Optimizing Data Pools to Accelerate Multilingual Progress (Odumakinde et al., 2024)

[9] <u>Verifying Annotation Agreement without Multiple Experts: A Case Study with Gujarati SNACS (Mehta & Srikumar,</u> Findings 2023)



Inequalities in Technology across Languages

- Breaking the unwritten language barrier: The bulb project (Adda et al., 2016)

- Which Humans? (Atari et al., 2023)
- Articles 2023)
- Do All Languages Cost the Same? Tokenization in the Era of Commercial Language Models (Ahia et al., EMNLP 2023)

Multilingual Language Models

- mBART: <u>Multilingual Denoising Pre-training for Neural Machine Translation</u> (Liu et al., TACL 2020)
- mT5: <u>A Massively Multilingual Pre-trained Text-to-Text Transformer</u> (Xue et al., NAACL 2021)
- BLOOM: <u>A 176B-Parameter Open-Access Multilingual Language Model (BigScience, 2022)</u>
- xGLM: Few-shot Learning with Multilingual Generative Language Models (Lin et al., 2023)
- Glot500-m: Glot500: Scaling multilingual corpora and language models to 500 languages (Imani et al., 2023)
- PolyLM: <u>An Open Source Polyglot Large Language Model</u> (Wei et al., 2023)

- mGPT: Few-Shot Learners Go Multilingual (Shliazhko et al., TACL 2024)
- Aya-101: Aya Model: An Instruction Finetuned Open-Access Multilingual Language Model (Üstün et al., 2024)
- MALA-500: Massive Language Adaptation of Large Language Models (Lin et al., 2024)
- Aya-23: Open Weight Releases to Further Multilingual Progress (Aryabumi et al., 2024) ٠

<u>The State and Fate of Linguistic Diversity and Inclusion in the NLP World</u> (Joshi et al., ACL 2020) <u>Global predictors of language endangerment and the future of linguistic diversity</u>(Bromham et al., 2021, Nature Ecology&Evolution) <u>Systematic Inequalities in Language Technology Performance across the World's Languages</u> (Blasi et al., ACL 2022)

Decolonizing NLP for "Low-resource Languages" (Ògúnrèmí et al., Al Frameworks Discussion of Abeba Birhane's "Algorithmic Injustice" and Social Impact

Abundance of words versus poverty of mind: the hidden human costs co-created with LLMs (Vuong and Ho, AI & Society 2024)

```
BLÓOMZ: <u>Crosslingual Generalization through Multitask Finetuning</u> (Muennighoff et al., ACL 2023)
mTo: <u>Crosslingual Generalization through Multitask Finetuning</u> (Muennighoff et al., ACL 2023)
Okapi series: Instruction-tuned Large Language Models in Multiple Languages with Reinforcement Learning from Human Feedback (Lai et al., 2023)
```

Multilingual Pre-training

- mC4: <u>mT5: A Massively Multilingual Pre-trained Text-to-Text Transformer</u> (Xue et al., 2021)
- ROOTS: The BigScience ROOTS Corpus: A 1.6TB Composite Multilingual Dataset (Laurençon, NeurIPS 2022)
- Glot2000-c & Glot500-c: Scaling multilingual corpora and language models to 500 languages (Imani et al., 2023)

Multilingual Instruction-Tuning

- Super-NaturalInstructions: Generalization via Declarative Instructions on 1600+ NLP Tasks (Wang et al., EMNLP 2022)
- xP3 & xP3mt: Crosslingual generalization through multitask finetuning (Muennighoff et al., ACL 2023)
- xP3x: Aya Model: An Instruction Finetuned Open-Access Multilingual Language Model (Üstün et al., 2024)
- Aya Dataset & Collection: Aya Dataset: An Open-Access Collection for Multilingual Instruction Tuning (Singh et al., ACL 2024)
- Multilingual Instruction Tuning With Just a Pinch of Multilinguality (Shaham et al., Findings 2024)

Multilingual Preference and Safety Alignment

- Multilingual Jailbreak Challenges in Large Language Models (Deng et al., 2023)
- The Language Barrier: Dissecting Safety Challenges of LLMs in Multilingual Contexts (Shen et al., 2024)
- Having Beer after Prayer? Measuring Cultural Bias in Large Language Models (Naous et al., 2024)
- <u>All Languages Matter: On the Multilingual Safety of LLMs</u> (Wang et al., Findings 2024)
- From One to Many: Expanding the Scope of Toxicity Mitigation in Language Models (Ermis et al., Findings 2024)
- Reuse Your Rewards: Reward Model Transfer for Zero-Shot Cross-Lingual Alignment (Wu et al., 2024)
- Preference Tuning For Toxicity Mitigation Generalizes Across Languages (Li et al., 2024)
- RLHF Can Speak Many Languages: Unlocking Multilingual Preference Optimization for LLMs (Dang et al., 2024)
- The Multilingual Alignment Prism: Aligning Global and Local Preferences to Reduce Harm (Aakanksha et al., 2024)

Okapi: Instruction-tuned Large Language Models in Multiple Languages with Reinforcement Learning from Human Feedback (Lai et al., 2023)

PolygloToxicityPrompts: Multilingual Evaluation of Neural Toxic Degeneration in Large Language Models (Jain et al., 2024)

Curse of Multilinguality and Architectural Solutions

- Unsupervised Cross-lingual Representation Learning at Scale (Conneau et al., ACL 2020)
- MAD-X: An Adapter-Based Framework for Multi-Task Cross-Lingual Transfer (Pfeiffer et al., EMNLP 2020)
- MAD-G: Multilingual Adapter Generation for Efficient Cross-Lingual Transfer (Ansell et al., Findings 2021)
- Efficient Test Time Adapter Ensembling for Low-resource Language Varieties (Wang et al., Findings 2021) •
- Cross-lingual Few-Shot Learning on Unseen Languages (Winata et al., AACL-IJCNLP 2022)
- Lifting the Curse of Multilinguality by Pre-training Modular Transformers (Pfeiffer et al., NAACL 2022)
- BAD-X: Bilingual Adapters Improve Zero-Shot Cross-Lingual Transfer (Parović et al., NAACL 2022)
- Hyper-X: A Unified Hypernetwork for Multi-Task Multilingual Transfer (Üstün et al., EMNLP 2022)
- When Is Multilinguality a Curse? Language Modeling for 250 High- and Low-Resource Languages (Chang et al., 2024)
- Breaking the Curse of Multilinguality with Cross-lingual Expert Language Models (Blevins et al., arXiv 2024)

NLP for Indigenous Languages

- Local Languages, Third Spaces, and other High-Resource Scenarios (Bird, ACL 2022)

- Modeling the Sacred: Considerations when Using Religious Texts in Natural Language Processing (Hutchinson, Findings 2024)
- Must NLP be Extractive? (Bird, 2024)

Not always about you: Prioritizing community needs when developing endangered language technology (Liu et al., ACL 2022) "It's how you do things that matters": Attending to Process to Better Serve Indigenous Communities with Language Technologies (Cooper et al., EACL 2024)

Harnessing the Power of Artificial Intelligence to Vitalize Endangered Indigenous Languages: Technologies and Experiences (Pinhanez et al., 2024)

Adapting to New Languages

- How to Adapt Your Pretrained Multilingual Model to 1600 Languages (Ebrahimi & Kann, ACL-IJCNLP 2021)
- Phylogeny-Inspired Adaptation of Multilingual Models to New Languages (Faisal & Anastasopoulos, AACL-IJCNLP 2022)
- Expanding Pretrained Models to Thousands More Languages via Lexicon-based Adaptation (Wang et al., ACL 2022)
- Cross-lingual Continual Learning (M'hamdi et al., ACL 2023)
- BLOOM+1: Adding Language Support to BLOOM for Zero-Shot Prompting (Yong et al., ACL 2023)

Miscellaneous

- How Vocabulary Sharing Facilitates Multilingualism in LLaMA? (Yuan et al., 2023)
- 2023)
- XLM-V: Overcoming the Vocabulary Bottleneck in Multilingual Masked Language Models (Liang et al., EMNLP 2023)
- Do Multilingual Language Models Think Better in English? (Etxaniz et al., NAACL 2024)
- Do Llamas Work in English? On the Latent Language of Multilingual Transformers (Wendler et al., ACL 2024)
- How Does Quantization Affect Multilingual LLMs? (Marchisio et al., 2024)
- Multilingual Arbitrage: Optimizing Data Pools to Accelerate Multilingual Progress (Odumakinde et al., 2024)

Don't Stop Fine-Tuning: On Training Regimes for Few-Shot Cross-Lingual Transfer with Multilingual Language Models (Schmidt et al., EMNLP 2022)

Mini-Model Adaptation: Efficiently Extending Pretrained Models to New Languages via Aligned Shallow Training (Marchisio et al., Findings 2023) OFA: A Framework of Initializing Unseen Subword Embeddings for Efficient Large-scale Multilingual Continued Pretraining (Liu et al., Findings 2024)

Tokenization Impacts Multilingual Language Modeling: Assessing Vocabulary Allocation and Overlap Across Languages (Limisiewicz et al., Findings