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Logistics
• HW1 is due one week from today.

• Have you started working on it?
• Have you read the instructions / explored the code or dataset?
• Any questions?

• Final Projects 
• A 1-page proposal for the final project will be due mid-February. 
• Please start forming your teams (2-3 typically)



Recap: Text Classification
1. How do we evaluate our classifier f?

○ (Keyword for this section: … evaluation)

2. How do we “digest” text into a form usable by a function? 
○ (Keywords for this section: features, feature extraction, feature selection, 

representations)

3. What kinds of strategies might we use to create our function f?
○ (Keyword for this section: models)
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Binary classification in logistic regression

• Given a series of input/output pairs:
• (x(i), y(i)) 

• For each observation x(i)

• We represent x(i) by a feature vector {x1, x2, …, xn}
• We compute an output: a predicted class ŷ(i) ∈ {0,1}
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Features in logistic regression

• For feature xi∈{x1, x2, …, xn}, weight wi ∈{w1, w2, …, wn}
tells us how important is xi

○ xi = "review contains ‘awesome’": wi = +10
○ xj = "review contains horrible": wj = -10
○ xk = “review contains ‘mediocre’": wk = -2
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How to do classification
• For each feature xi, weight wi tells us importance of xi

○ (Plus we'll have a bias b)
○ We'll sum up all the weighted features and the bias

If this sum is high, we say y=1; if low, then y=0
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Formalizing “sum is high”
• We’d like a principled classifier that gives us a probability

• We want a model that can tell us:
○ p(y=1|x; θ)
○ p(y=0|x; θ)
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The problem: z isn't a probability, it's just a number!

• z ranges from -∞ to ∞

• Solution: use a function of z that goes from 0 to 1
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“sigmoid” or 
“logistic” function



The probabilistic classifier 
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Where do the weights (W) come from?
• Supervised classification:

○ At training time, we know the correct label y (either 0 or 1) for each x.
○ But what the system produces at inference time is an estimate ŷ

• We want to set w and b to minimize the distance between our 
estimate ŷ(i) and the true y(i)

○ We need a distance estimator: a loss function or an objective function
○ We need an optimization algorithm to update w and b to minimize the 

loss
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Learning components in LR
A loss function: 

• cross-entropy loss 

An optimization algorithm: 
• gradient descent
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Loss function: the distance between ŷ and y
We want to know how far is the classifier output ŷ 

from the true output: y [= either 0 or 1]

We'll call this difference: L(ŷ,y) = how much ŷ differs from the true 
y
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Training Objective: Maximize the Likelihood of 
the Training Data. 

We choose the parameters w,b that maximize
• the probability (aka likelihood)
• of the true y labels in the training data
• given the observations x
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Training Data

• Our training data (also known as the training corpus) is a list of 
input/output pairs:

• D = [(x(1), y(1)), … , (x(N), y(N))]
• Each x(i) is a document (or a paragraph or a sentence) --- piece of text. 

In general also called an observation. 
• Each y(i) is a label (0 or 1 in case of binary classification)
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Deriving the objective for a single observation x
Goal: maximize likelihood of the correct label under the model

The predicted probability for class 1 is ŷ.

If the correct label is 1, then the likelihood is ŷ.
If the correct label is 0, then the likelihood is 1-ŷ 

We can express the likelihood from our classifier:
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Deriving the objective for a single observation x

Goal: maximize likelihood

Noting:
if y=1, this simplifies to ŷ
if y=0, this simplifies to 1 - ŷ
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Deriving the objective for a single observation x

Goal: maximize likelihood

Now take the log of both sides (mathematically handy)
Maximize:
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Deriving the objective for a single observation x

Goal: maximize likelihood

Now take the log of both sides (mathematically handy)
Maximize:

Whatever values maximize log p(y|x) will also maximize p(y|x)
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Deriving the objective for a single observation x

Goal: maximize probability of the correct label p(y|x) 
Maximize: 

Now flip sign to turn this into a loss: something to minimize
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Deriving the objective for a single observation x

Goal: maximize probability of the correct label p(y|x) 
Maximize: 

Now flip sign to turn this into a cross-entropy loss: something to 
minimize
Minimize:
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Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x) 
Maximize: 

Now flip sign to turn this into a cross-entropy loss: something to 
minimize
Minimize:

Or, plug in definition of ŷ = σ(w∙x+b) 
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Our goal: minimize the loss
Let's make explicit that the loss function is parameterized by 
weights 𝛳𝛳=(w,b)

• And we’ll represent ŷ as f(x; θ) to make the dependence on θ
more obvious

We want the weights that minimize the loss, averaged over all 
examples:
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Let's see if this works for our sentiment example

We want loss to be:
• smaller if the model estimate ŷ is close to correct
• bigger if model is confused

Let's first suppose the true label of this is y=1 (positive)

It's hokey . There are virtually no surprises , and the writing is 
second-rate .  So why was it so enjoyable ? For one thing , the cast 
is great . Another nice touch is the music . I was overcome with the 
urge to get off the couch and start dancing . It sucked me in , and 
it'll do the same to you .
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Let's see if this works for our sentiment example

True value is y=1 (positive). How well is our model doing?

Pretty well!  
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Let's see if this works for our sentiment example

True value is y=1 (positive). How well is our model doing?

Pretty well!  What's the loss?
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Let's see if this works for our sentiment example

Suppose the true value instead was y=0 (negative).
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Let's see if this works for our sentiment example

Suppose the true value instead was y=0 (negative).

What's the loss?
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Let's see if this works for our sentiment example

The loss when the model was right (if true y=1)

The loss when the model was wrong (if true y=0)

Sure enough, loss was bigger when model was wrong!
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Learning components
A loss function: 

• cross-entropy loss 

An optimization algorithm: 
• gradient descent
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Gradient Descent
• Gradient Descent algorithm

○ is used to optimize the weights for a machine learning model
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Let's first visualize for a single scalar w
Q: Given current w, should we make it bigger or smaller? 
A: Move w in the reverse direction from the slope of the function
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Our goal: minimize the loss
For logistic regression, loss function is convex

• A convex function has just one minimum
• Gradient descent starting from any point is guaranteed to find 

the minimum
○ (Loss for neural networks is non-convex)
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Gradients

The gradient of a function of many variables is a vector pointing in 
the direction of the greatest increase in a function. 

Gradient Descent: Find the gradient of the loss function at the 
current point and move in the opposite direction. 
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How much do we move in that direction?
• The value of the gradient (slope in our example)

○ weighted by a learning rate η

• Higher learning rate means move w faster
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Now let's consider N dimensions
We want to know where in the N-dimensional space (of the N
parameters that make up θ ) we should move.

The gradient is just such a vector; it expresses the directional 
components of the sharpest slope along each of the N dimensions.
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Imagine 2 dimensions, w and b
Visualizing the gradient vector
at the red point 
It has two dimensions shown 
in the x-y plane
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Real gradients
Are much longer; lots and lots of weights

For each dimension wi the gradient component i tells us the slope 
with respect to that variable. 

• “How much would a small change in wi influence the total loss 
function L?” 

• We express the slope as a partial derivative ∂

The gradient is then defined as a vector of these partials. 
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The gradient
We’ll represent ŷ as f(x; θ) to make the dependence on θ more 
obvious:

The final equation for updating θ based on the gradient is thus:
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What are these partial derivatives for logistic 
regression?
The loss function

The elegant derivative of this function
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Gradient Descent Algorithm: Summary

1. Given a dataset D = [(x, y)], a model with weights w=(w1, … 
wn), and a loss function L(D, w). 

2. Initialize w randomly
3. Compute gradient of L, ∇𝐿𝐿

Update 𝑤𝑤 ← 𝑤𝑤 − 𝜂𝜂∇𝐿𝐿
4. Repeat 3 

• until convergence



Hyperparameters
The learning rate η is a hyperparameter

• too high: the learner will take big steps and overshoot
• too low: the learner will take too long 

Hyperparameters:
• Briefly, a special kind of parameter for an ML model
• Instead of being learned by algorithm from supervision (like 

regular parameters), they are chosen by algorithm designer.
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Mini-batch training
Gradient descent computes the loss over the entire dataset. That 
can be slow.

More common to compute gradient over batches of training 
instances. 

Mini-batch training: m examples at every gradient step.
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Overfitting
A model that perfectly match the training data has a problem.

It will also overfit to the data, modeling noise
• A random word that perfectly predicts y (it happens to only 

occur in one class) will get a very high weight.
• Failing to generalize to a test set without this word. 

A good model should be able to generalize

48



Regularization
A solution for overfitting

Add a regularization term R(θ) to the loss function (for now 
written as maximizing logprob rather than minimizing loss)

Idea: choose an R(θ) that penalizes large weights
• fitting the data well with lots of big weights not as good as 

fitting the data a little less well, with small weights
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L2 regularization (ridge regression)
The sum of the squares of the weights

L2 regularized objective function:
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Multinomial Logistic Regression
Classification into more than 2 classes.

If >2 classes we use multinomial logistic regression
= Softmax regression 
= Multinomial logit 
= (defunct names : Maximum entropy modeling or MaxEnt)
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Multinomial Logistic Regression
In binary classification, we have a set of weights 𝑤𝑤, one 
corresponding to each feature.

In N-class classification, we define a set of weights for each class, 
𝑤𝑤𝑦𝑦: n weights for each feature
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Multinomial Logistic Regression

• Binary: convert the features to a score (real number), and apply 
sigmoid

○ Score: z = 𝑤𝑤 ⋅ 𝑥𝑥 + 𝑏𝑏
○ Probability of y=1: 𝜎𝜎(𝑧𝑧)

• N-class: convert the features in N scores (also called logits):
○ Scores: [ 𝑤𝑤1 ⋅ 𝑥𝑥 + 𝑏𝑏,𝑤𝑤2 ⋅ 𝑥𝑥 + 𝑏𝑏, … ] = [𝑧𝑧1, 𝑧𝑧2, … .]
○ Convert to probabilities using a “softmax” function – N-dimensional 

generalization of sigmoid. 



Sigmoid → softmax
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Softmax gives you a vector (whose values sum up to 1)



The softmax function
• Turns a vector z = [z1, z2, ..., zk] of k arbitrary values (logits) 

into probabilities

• The denominator                    is used to normalize all the values 
into probabilities 

56



Neural Nets Basics



• Neural network algorithms date to the 1980s, 
and design trace their origin to the 1950s

• Originally inspired by early neuroscience

• Historically slow, complex, and unwieldy
• Now: term is abstract enough to encompass 

almost any model – but useful!
• Dramatic shift started around 2013-15 away 

from linear, convex (like logistic regression) to 
neural networks (non-linear architecture, non-
convex)

A Little Bit of History
Neural Networks
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Neural Networks
• Non-neural ML works well because of 

human-designed representations and 
input features

• ML becomes just optimizing weights
• Representation learning attempts to 

automatically learn good features and 
representations

• Deep learning attempts to learn 
multiple levels of representation of 
increasing complexity/abstraction
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The Promise



Why neural networks?
• Linear models like logistic regression require hand-designing 

features.
• Requires knowledge of the task, domain, language. 
• Time consuming

• Linear models assume the classes are linearly separable given the 
features. 



Linear models assume separability



Neural Networks: XOR
• Let’s see how we can use neural nets

to learn a simple nonlinear function
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Neural Networks: XOR
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Neural Networks: XOR
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Building Blocks
• Neural networks traditionally come with their own terminology baggage

○ Some of it is less common in more recent work

• Parameters: 

○ Inputs: 𝑥𝑥𝑖𝑖

○ Weights: 𝑤𝑤𝑖𝑖 and 𝑏𝑏

○ Activation function 𝑓𝑓

• If we drop the activation function, reminds you of something?
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The Neuron



Building Blocks
• It gets interesting when you 

connect and stack neurons

• This modularity is one of the 
greatest strengths of neural 
networks

• Input vs. hidden vs. output 
layers

• The activations of the hidden 
layers are the learned 
representation

66

Hidden Layers



Building Blocks
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Matrix Notation

No activation/non-linearity function

𝑎𝑎1
𝑎𝑎2
𝑎𝑎3

ℎ1
ℎ2
ℎ3
ℎ4

𝑜𝑜1
𝑜𝑜2



Building Blocks
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Matrix Notation

No activation/non-linearity function

𝑎𝑎1
𝑎𝑎2
𝑎𝑎3

ℎ1
ℎ2
ℎ3
ℎ4

𝑜𝑜1
𝑜𝑜2

ℎ1 = 𝑎𝑎1𝑊𝑊11
′ + 𝑎𝑎2𝑊𝑊21

′ + 𝑎𝑎3𝑊𝑊31
′ + 𝑏𝑏1′

ℎ4 = 𝑎𝑎1𝑊𝑊14
′ + 𝑎𝑎2𝑊𝑊24

′ + 𝑎𝑎3𝑊𝑊34
′ + 𝑏𝑏4′

ℎ2 = 𝑎𝑎1𝑊𝑊12
′ + 𝑎𝑎2𝑊𝑊22

′ + 𝑎𝑎3𝑊𝑊32
′ + 𝑏𝑏1′

ℎ3 = 𝑎𝑎1𝑊𝑊13
′ + 𝑎𝑎2𝑊𝑊23

′ + 𝑎𝑎3𝑊𝑊33
′ + 𝑏𝑏1′

𝑜𝑜1 = ℎ1𝑊𝑊11
′′ + ℎ2𝑊𝑊21

′′ + ℎ3𝑊𝑊31
′′ + ℎ4𝑊𝑊41

′′ + 𝑏𝑏1′′
𝑜𝑜2 = ℎ1𝑊𝑊12

′′ + ℎ2𝑊𝑊22
′′ + ℎ3𝑊𝑊32

′′ + ℎ4𝑊𝑊42
′′ + 𝑏𝑏2′′

𝒉𝒉𝟒𝟒×𝟏𝟏 = 𝑾𝑾𝟒𝟒×𝟑𝟑
′ 𝒂𝒂𝟑𝟑×𝟏𝟏 + 𝒃𝒃𝟒𝟒×𝟏𝟏

′

𝒐𝒐𝟐𝟐×𝟏𝟏 = 𝑾𝑾𝟐𝟐×𝟒𝟒
′′ 𝒉𝒉𝟒𝟒×𝟏𝟏 + 𝒃𝒃𝟐𝟐×𝟏𝟏

′′



Building Blocks
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Activation Functions
Activation (non-linearity) function is an entry-wise function 

𝑓𝑓:ℝ → ℝ

𝒉𝒉𝟒𝟒×𝟏𝟏 = 𝒇𝒇(𝑾𝑾𝟒𝟒×𝟑𝟑
′ 𝒂𝒂𝟑𝟑×𝟏𝟏 + 𝒃𝒃𝟒𝟒×𝟏𝟏

′ )

𝒐𝒐𝟐𝟐×𝟏𝟏 = 𝑾𝑾𝟐𝟐×𝟒𝟒
′′ 𝒉𝒉𝟒𝟒×𝟏𝟏 + 𝒃𝒃𝟐𝟐×𝟏𝟏

′′

ℎ1 = 𝑎𝑎1𝑊𝑊11
′ + 𝑎𝑎2𝑊𝑊21

′ + 𝑎𝑎3𝑊𝑊31
′ + 𝑏𝑏1′

ℎ4 = 𝑎𝑎1𝑊𝑊14
′ + 𝑎𝑎2𝑊𝑊24

′ + 𝑎𝑎3𝑊𝑊34
′ + 𝑏𝑏4′

ℎ2 = 𝑎𝑎1𝑊𝑊12
′ + 𝑎𝑎2𝑊𝑊22

′ + 𝑎𝑎3𝑊𝑊32
′ + 𝑏𝑏1′

ℎ3 = 𝑎𝑎1𝑊𝑊13
′ + 𝑎𝑎2𝑊𝑊23

′ + 𝑎𝑎3𝑊𝑊33
′ + 𝑏𝑏1′



Building Blocks

70

Activation Functions
Activation (non-linearity) function is an entry-wise function 

𝑓𝑓:ℝ → ℝ



Why activation functions?
• What if we do not have activation functions

𝒐𝒐 = 𝑾𝑾′′𝒉𝒉 + 𝒃𝒃′′
𝒐𝒐 = 𝑾𝑾′′ 𝑾𝑾′𝒂𝒂 + 𝒃𝒃′ + 𝒃𝒃′′
𝒐𝒐 = 𝑾𝑾′′𝑾𝑾′𝒂𝒂 + 𝑾𝑾′′𝒃𝒃′ + 𝒃𝒃′′

Define 𝑊𝑊′′′ = 𝑊𝑊′′𝑊𝑊′ and 𝑏𝑏′′′ = 𝑊𝑊′′𝑏𝑏′ + 𝑏𝑏′′

A multi-layer linear network is the same as a 1-layer network (with some caveats) 



Deep Neural Networks

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

output of first layer



• So far, words (and features) are atomic symbols:

• “hotel”, “conference”, “walking”, “___ing”

• But neural networks take continuous vector inputs

• How can we bridge this gap?

• One-hot vectors

          hotel = 0 0 0 ⋯0 0 1 0 0 0 0 0 0
conference = 0 0 0 ⋯0 0 0 0 0 0 1 0 0

• Dimensionality: size of the vocabulary

• Can be >10M for web-scale corpora

• Problems?

One-hot Word Representations
Building Blocks
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• One-hot vectors
          hotel = 0 0 0 ⋯ 0 0 1 0 0 0 0 0 0
conference = 0 0 0 ⋯0 0 0 0 0 0 1 0 0

• Problems?
• Information sharing? “hotel” vs. “hotels”

One-hot Word Representations
Building Blocks for Neural NLP
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• Each word is represented using a dense low-dimensional vector
• Low-dimensional << vocabulary size

• If trained well, similar words will have similar vectors
• How to train? What objective to maximize? 

• As part of task training (e.g., supervised training)
• Pre-training (more on this later)

Word Embeddings
Building Blocks
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Training Neural Networks
• No hidden layer → same as logistic regression (convex, guaranteed to 

converge)

• With hidden layers:

○ Latent units → not convex

○ What do we do?

■ Back-propagate the gradient 

■ Based on the chain rule

■ About the same, but no guarantees
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• One of the most basic neural models

• Example: sentiment classification 

• Input: text document

• Classes: very positive, positive, neutral, negative, very negative

• We discussed doing this with a bag-of-words feature-based model

• What would be the neural equivalent? 

• Concatenate all vectors?

• Problem: different documents → different input length

• Instead: sum, average, etc.

Neural Bag of Words
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Deep Averaging Networks (Iyyer et al. 2015)
Neural Bag of Words
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IMDB Sentiment Analysis

BOW + linear model 88.23

NBOW DAN 89.4



Neural Networks: Practical Tips
• Select network structure appropriate for the problem

○ Window vs. recurrent vs. recursive (will discuss throughout the semester)

• Parameter initialization

○ Model is powerful enough?

■ If not, make it larger 

■ Yes, so regularize, otherwise it will overfit

• Gradient checks to identify bugs

○ If you build from scratch

• Know your non-linearity function and its gradient

○ Example tanh(𝑥𝑥)

■ 𝜕𝜕
𝜕𝜕𝜕𝜕

tanh(𝑥𝑥) = 1 − tanh2(𝑥𝑥)
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• Verify value of initial loss when using softmax
• Perfectly fit a single example, then mini-batch, then train
• If learning fails completely, maybe gradients stuck

• Check learning rate
• Verify parameter initialization
• Change non-linearity functions

Debugging
Practical Tips
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• Very expressive models, can overfit easily

• It will look great on the training data, but everything else will be terrible

• Some potential cures 

• Reduce model size (but not too much)

• L1 and L2 regularization

• Early stopping (e.g., patience)

• Learning rate scheduling

• Dropout (Hinton et al. 2012)

• Randomly set 50% of inputs in each layer to 0

Avoid Overfitting
Practical Tips
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• The descriptive language of deep learning models
• Functional description of the required computation
• Can be instantiated to do two types of computation:

• Forward computation
• Backward computation

Computation Graphs
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A node is a {tensor, matrix, vector, scalar} value

expression:

graph:
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expression:

graph:

An edge represents a function argument
(and also data dependency). They are just
pointers to nodes.
A node with an incoming edge is a function of 
that edge’s tail node.

A node knows how to compute its value and the 
value of its derivative w.r.t each argument (edge) 
times a derivative of an arbitrary input       .
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expression:

graph:

Functions can be nullary, unary,
binary, … n-ary. Often they are unary or binary.
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expression:

graph:

Computation graphs are directed and acyclic (usually)
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expression:

graph:
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expression:

graph:
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expression:

graph:

variable names are just labelings of nodes.
89



• Graph construction

• Forward propagation

• Loop over nodes in topological order

• Compute the value of the node given its inputs

• Given my inputs, make a prediction (or compute an “error” with respect to a “target output”)

• Backward propagation

• Loop over the nodes in reverse topological order starting with a final goal node

• Compute derivatives of final goal node value with respect to each edge’s tail node

• How does the output change if I make a small change to the inputs?

Algorithms
Computation Graphs
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Forward Propagation
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graph:



Forward Propagation
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Forward Propagation
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Forward Propagation
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Forward Propagation
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graph:

Forward Propagation

96



graph:

Forward Propagation
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graph:

Forward Propagation

98



• Static declaration

• Phase 1: define an architecture
(maybe with some primitive flow control like loops and conditionals)

• Phase 2: run a bunch of data through it to train the model and/or make predictions

• Dynamic declaration (a.k.a define-by-run)

• Graph is defined implicitly (e.g., using operator overloading) as the forward 
computation is executed 

• Graph is constructed dynamically 

• This allows incorporating conditionals and loops into the network definitions easily

Two Software Models
Constructing Graphs
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• Two senses to processing your data in batch
• Computing gradients for more than one example at a time to update 

parameters during learning
• Processing examples together to utilize all available resources

• CPU: made of a small number of cores, so can handle some 
amount of work in parallel

• GPU: made of thousands of small cores, so can handle a lot of 
work in parallel

• Process multiple examples together to use all available cores

Batching
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• Relatively easy when the network looks exactly the same for all 
examples 

• More complex with language data: documents/sentences/words 
have different lengths

• Frameworks provide different methods to help common cases, 
but still require work on the developer side

• Key concept is broadcasting: 
https://pytorch.org/docs/stable/notes/broadcasting.html

Batching
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https://pytorch.org/docs/stable/notes/broadcasting.html


Batching
MLP Sketch
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• Input and intermediate results 
become tensors — batch is 
another dimension!

• Do not add batch dimension 
of parameters! What happens 
then? 
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Complex Network Architectures
Batching

• Complex networks may include 
different parts with varying 
length (more about this later)

• In the extreme, it may be 
complex to batch complete 
examples this way

• But: you can still batch sub-
parts across examples, so you 
alternate between batched and 
non-batched computations

Sentences

Alice gave a message to Bob

PPNP

VP

VP

S

Documents
This film was completely unbelievable.

The characters were wooden and the plot was absurd.

That being said, I liked it.



Backpropagation
But what about the gradient w.r.t. W_1?

Apply the chain rule
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Are we going to compute derivatives 
ourselves every time? 

No, we will use frameworks that we will do them for us!

● Deep Learning with PyTorch: A 60 Minute Blitz
● CS 5350/6350 Machine Learning Fall 2023: PyTorch Tutorial
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import torch
from torchvision.models import resnet18, ResNet18_Weights
model = resnet18(weights=ResNet18_Weights.DEFAULT)
data = torch.rand(1, 3, 64, 64)
labels = torch.rand(1, 1000)
prediction = model(data) # forward pass
loss = (prediction - labels).sum()
loss.backward() # backward pass; autograd calculates and stores the gradients for each model 
parameter in the parameter's .grad attribute.
optim = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9)
optim.step() #gradient descent; optimizer adjusts each parameter by its gradient stored in .grad

https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://youtu.be/apJL7lzR3cg?si=XOqsH2nLzCpbjv-A
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