
Text Classification 2 /
Neural Network Basics

CSE 5525: Foundations of Speech and Language Processing

Sachin Kumar (kumar.1145@osu.edu)

https://shocheen.github.io/cse-5525-spring-2025/

Slide Credits: Yulia Tsvetkov, Yoav Artzi, Greg Durrett

Logistics
• HW1 is due one week from today.

• Have you started working on it?
• Have you read the instructions / explored the code or dataset?
• Any questions?

• Final Projects
• A 1-page proposal for the final project will be due mid-February.
• Please start forming your teams (2-3 typically)

Recap: Text Classification
1. How do we evaluate our classifier f?

○ (Keyword for this section: … evaluation)

2. How do we “digest” text into a form usable by a function?
○ (Keywords for this section: features, feature extraction, feature selection,

representations)

3. What kinds of strategies might we use to create our function f?
○ (Keyword for this section: models)

3

Recap: Text Classification
1. How do we evaluate our classifier f?

○ (Keyword for this section: … evaluation)

2. How do we “digest” text into a form usable by a function?
○ (Keywords for this section: features, feature extraction, feature selection,

representations)

3. What kinds of strategies might we use to create our function f?
○ (Keyword for this section: models)

4

Binary classification in logistic regression

• Given a series of input/output pairs:
• (x(i), y(i))

• For each observation x(i)

• We represent x(i) by a feature vector {x1, x2, …, xn}
• We compute an output: a predicted class ŷ(i) ∈ {0,1}

5

Features in logistic regression

• For feature xi∈{x1, x2, …, xn}, weight wi ∈{w1, w2, …, wn}
tells us how important is xi

○ xi = "review contains ‘awesome’": wi = +10
○ xj = "review contains horrible": wj = -10
○ xk = “review contains ‘mediocre’": wk = -2

6

How to do classification
• For each feature xi, weight wi tells us importance of xi

○ (Plus we'll have a bias b)
○ We'll sum up all the weighted features and the bias

If this sum is high, we say y=1; if low, then y=0

7

Formalizing “sum is high”
• We’d like a principled classifier that gives us a probability

• We want a model that can tell us:
○ p(y=1|x; θ)
○ p(y=0|x; θ)

8

The problem: z isn't a probability, it's just a number!

• z ranges from -∞ to ∞

• Solution: use a function of z that goes from 0 to 1

9

“sigmoid” or
“logistic” function

The probabilistic classifier

10

Where do the weights (W) come from?
• Supervised classification:

○ At training time, we know the correct label y (either 0 or 1) for each x.
○ But what the system produces at inference time is an estimate ŷ

• We want to set w and b to minimize the distance between our
estimate ŷ(i) and the true y(i)

○ We need a distance estimator: a loss function or an objective function
○ We need an optimization algorithm to update w and b to minimize the

loss

11

Learning components in LR
A loss function:

• cross-entropy loss

An optimization algorithm:
• gradient descent

12

Loss function: the distance between ŷ and y
We want to know how far is the classifier output ŷ

from the true output: y [= either 0 or 1]

We'll call this difference: L(ŷ,y) = how much ŷ differs from the true
y

13

Training Objective: Maximize the Likelihood of
the Training Data.

We choose the parameters w,b that maximize
• the probability (aka likelihood)
• of the true y labels in the training data
• given the observations x

14

Training Data

• Our training data (also known as the training corpus) is a list of
input/output pairs:

• D = [(x(1), y(1)), … , (x(N), y(N))]
• Each x(i) is a document (or a paragraph or a sentence) --- piece of text.

In general also called an observation.
• Each y(i) is a label (0 or 1 in case of binary classification)

15

Deriving the objective for a single observation x
Goal: maximize likelihood of the correct label under the model

The predicted probability for class 1 is ŷ.

If the correct label is 1, then the likelihood is ŷ.
If the correct label is 0, then the likelihood is 1-ŷ

We can express the likelihood from our classifier:

16

Deriving the objective for a single observation x

Goal: maximize likelihood

Noting:
if y=1, this simplifies to ŷ
if y=0, this simplifies to 1 - ŷ

17

Deriving the objective for a single observation x

Goal: maximize likelihood

Now take the log of both sides (mathematically handy)
Maximize:

18

Deriving the objective for a single observation x

Goal: maximize likelihood

Now take the log of both sides (mathematically handy)
Maximize:

Whatever values maximize log p(y|x) will also maximize p(y|x)

19

Deriving the objective for a single observation x

Goal: maximize probability of the correct label p(y|x)
Maximize:

Now flip sign to turn this into a loss: something to minimize

20

Deriving the objective for a single observation x

Goal: maximize probability of the correct label p(y|x)
Maximize:

Now flip sign to turn this into a loss: something to minimize
Minimize:

21

Deriving the objective for a single observation x

Goal: maximize probability of the correct label p(y|x)
Maximize:

Now flip sign to turn this into a cross-entropy loss: something to
minimize
Minimize:

22

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)
Maximize:

Now flip sign to turn this into a cross-entropy loss: something to
minimize
Minimize:

Or, plug in definition of ŷ = σ(w∙x+b)

23

Our goal: minimize the loss
Let's make explicit that the loss function is parameterized by
weights 𝛳𝛳=(w,b)

• And we’ll represent ŷ as f(x; θ) to make the dependence on θ
more obvious

We want the weights that minimize the loss, averaged over all
examples:

24

Let's see if this works for our sentiment example

We want loss to be:
• smaller if the model estimate ŷ is close to correct
• bigger if model is confused

Let's first suppose the true label of this is y=1 (positive)

It's hokey . There are virtually no surprises , and the writing is
second-rate . So why was it so enjoyable ? For one thing , the cast
is great . Another nice touch is the music . I was overcome with the
urge to get off the couch and start dancing . It sucked me in , and
it'll do the same to you .

25

Let's see if this works for our sentiment example

True value is y=1 (positive). How well is our model doing?

Pretty well!

26

Let's see if this works for our sentiment example

True value is y=1 (positive). How well is our model doing?

Pretty well! What's the loss?

27

Let's see if this works for our sentiment example

Suppose the true value instead was y=0 (negative).

28

Let's see if this works for our sentiment example

Suppose the true value instead was y=0 (negative).

What's the loss?

29

Let's see if this works for our sentiment example

The loss when the model was right (if true y=1)

The loss when the model was wrong (if true y=0)

Sure enough, loss was bigger when model was wrong!
30

Learning components
A loss function:

• cross-entropy loss

An optimization algorithm:
• gradient descent

31

Gradient Descent
• Gradient Descent algorithm

○ is used to optimize the weights for a machine learning model

32

Let's first visualize for a single scalar w
Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

33

Let's first visualize for a single scalar w
Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

34

Let's first visualize for a single scalar w
Q: Given current w, should we make it bigger or smaller?
A: Move w in the reverse direction from the slope of the function

35

Our goal: minimize the loss
For logistic regression, loss function is convex

• A convex function has just one minimum
• Gradient descent starting from any point is guaranteed to find

the minimum
○ (Loss for neural networks is non-convex)

36

Gradients

The gradient of a function of many variables is a vector pointing in
the direction of the greatest increase in a function.

Gradient Descent: Find the gradient of the loss function at the
current point and move in the opposite direction.

37

How much do we move in that direction?
• The value of the gradient (slope in our example)

○ weighted by a learning rate η

• Higher learning rate means move w faster

38

Now let's consider N dimensions
We want to know where in the N-dimensional space (of the N
parameters that make up θ) we should move.

The gradient is just such a vector; it expresses the directional
components of the sharpest slope along each of the N dimensions.

39

Imagine 2 dimensions, w and b
Visualizing the gradient vector
at the red point
It has two dimensions shown
in the x-y plane

40

Real gradients
Are much longer; lots and lots of weights

For each dimension wi the gradient component i tells us the slope
with respect to that variable.

• “How much would a small change in wi influence the total loss
function L?”

• We express the slope as a partial derivative ∂

The gradient is then defined as a vector of these partials.

41

The gradient
We’ll represent ŷ as f(x; θ) to make the dependence on θ more
obvious:

The final equation for updating θ based on the gradient is thus:

42

What are these partial derivatives for logistic
regression?
The loss function

The elegant derivative of this function

43

Gradient Descent Algorithm: Summary

1. Given a dataset D = [(x, y)], a model with weights w=(w1, …
wn), and a loss function L(D, w).

2. Initialize w randomly
3. Compute gradient of L, ∇𝐿𝐿

Update 𝑤𝑤 ← 𝑤𝑤 − 𝜂𝜂∇𝐿𝐿
4. Repeat 3

• until convergence

Hyperparameters
The learning rate η is a hyperparameter

• too high: the learner will take big steps and overshoot
• too low: the learner will take too long

Hyperparameters:
• Briefly, a special kind of parameter for an ML model
• Instead of being learned by algorithm from supervision (like

regular parameters), they are chosen by algorithm designer.

46

Mini-batch training
Gradient descent computes the loss over the entire dataset. That
can be slow.

More common to compute gradient over batches of training
instances.

Mini-batch training: m examples at every gradient step.

47

Overfitting
A model that perfectly match the training data has a problem.

It will also overfit to the data, modeling noise
• A random word that perfectly predicts y (it happens to only

occur in one class) will get a very high weight.
• Failing to generalize to a test set without this word.

A good model should be able to generalize

48

Regularization
A solution for overfitting

Add a regularization term R(θ) to the loss function (for now
written as maximizing logprob rather than minimizing loss)

Idea: choose an R(θ) that penalizes large weights
• fitting the data well with lots of big weights not as good as

fitting the data a little less well, with small weights

49

L2 regularization (ridge regression)
The sum of the squares of the weights

L2 regularized objective function:

50

Multinomial Logistic Regression
Classification into more than 2 classes.

If >2 classes we use multinomial logistic regression
= Softmax regression
= Multinomial logit
= (defunct names : Maximum entropy modeling or MaxEnt)

52

Multinomial Logistic Regression
In binary classification, we have a set of weights 𝑤𝑤, one
corresponding to each feature.

In N-class classification, we define a set of weights for each class,
𝑤𝑤𝑦𝑦: n weights for each feature

53

Multinomial Logistic Regression

• Binary: convert the features to a score (real number), and apply
sigmoid

○ Score: z = 𝑤𝑤 ⋅ 𝑥𝑥 + 𝑏𝑏
○ Probability of y=1: 𝜎𝜎(𝑧𝑧)

• N-class: convert the features in N scores (also called logits):
○ Scores: [𝑤𝑤1 ⋅ 𝑥𝑥 + 𝑏𝑏,𝑤𝑤2 ⋅ 𝑥𝑥 + 𝑏𝑏, …] = [𝑧𝑧1, 𝑧𝑧2, … .]
○ Convert to probabilities using a “softmax” function – N-dimensional

generalization of sigmoid.

Sigmoid → softmax

55

Softmax gives you a vector (whose values sum up to 1)

The softmax function
• Turns a vector z = [z1, z2, ..., zk] of k arbitrary values (logits)

into probabilities

• The denominator is used to normalize all the values
into probabilities

56

Neural Nets Basics

• Neural network algorithms date to the 1980s,
and design trace their origin to the 1950s

• Originally inspired by early neuroscience

• Historically slow, complex, and unwieldy
• Now: term is abstract enough to encompass

almost any model – but useful!
• Dramatic shift started around 2013-15 away

from linear, convex (like logistic regression) to
neural networks (non-linear architecture, non-
convex)

A Little Bit of History
Neural Networks

58

Neural Networks
• Non-neural ML works well because of

human-designed representations and
input features

• ML becomes just optimizing weights
• Representation learning attempts to

automatically learn good features and
representations

• Deep learning attempts to learn
multiple levels of representation of
increasing complexity/abstraction

59

The Promise

Why neural networks?
• Linear models like logistic regression require hand-designing

features.
• Requires knowledge of the task, domain, language.
• Time consuming

• Linear models assume the classes are linearly separable given the
features.

Linear models assume separability

Neural Networks: XOR
• Let’s see how we can use neural nets

to learn a simple nonlinear function

1 1

1

11

1

0

0 0

0

0

0

0

1 0

1
‣ Inputs

‣ Output

Neural Networks: XOR

1 1

1

11

1

0
0 0

0

0

0

0

1 0

1

“or”

X

(looks like action
potential in neuron)

Neural Networks: XOR

1 1

1

11

1

0
0 0

0

0

0

0

1 0

1

X

Building Blocks
• Neural networks traditionally come with their own terminology baggage

○ Some of it is less common in more recent work

• Parameters:

○ Inputs: 𝑥𝑥𝑖𝑖

○ Weights: 𝑤𝑤𝑖𝑖 and 𝑏𝑏

○ Activation function 𝑓𝑓

• If we drop the activation function, reminds you of something?

65

The Neuron

Building Blocks
• It gets interesting when you

connect and stack neurons

• This modularity is one of the
greatest strengths of neural
networks

• Input vs. hidden vs. output
layers

• The activations of the hidden
layers are the learned
representation

66

Hidden Layers

Building Blocks

67

Matrix Notation

No activation/non-linearity function

𝑎𝑎1
𝑎𝑎2
𝑎𝑎3

ℎ1
ℎ2
ℎ3
ℎ4

𝑜𝑜1
𝑜𝑜2

Building Blocks

68

Matrix Notation

No activation/non-linearity function

𝑎𝑎1
𝑎𝑎2
𝑎𝑎3

ℎ1
ℎ2
ℎ3
ℎ4

𝑜𝑜1
𝑜𝑜2

ℎ1 = 𝑎𝑎1𝑊𝑊11
′ + 𝑎𝑎2𝑊𝑊21

′ + 𝑎𝑎3𝑊𝑊31
′ + 𝑏𝑏1′

ℎ4 = 𝑎𝑎1𝑊𝑊14
′ + 𝑎𝑎2𝑊𝑊24

′ + 𝑎𝑎3𝑊𝑊34
′ + 𝑏𝑏4′

ℎ2 = 𝑎𝑎1𝑊𝑊12
′ + 𝑎𝑎2𝑊𝑊22

′ + 𝑎𝑎3𝑊𝑊32
′ + 𝑏𝑏1′

ℎ3 = 𝑎𝑎1𝑊𝑊13
′ + 𝑎𝑎2𝑊𝑊23

′ + 𝑎𝑎3𝑊𝑊33
′ + 𝑏𝑏1′

𝑜𝑜1 = ℎ1𝑊𝑊11
′′ + ℎ2𝑊𝑊21

′′ + ℎ3𝑊𝑊31
′′ + ℎ4𝑊𝑊41

′′ + 𝑏𝑏1′′
𝑜𝑜2 = ℎ1𝑊𝑊12

′′ + ℎ2𝑊𝑊22
′′ + ℎ3𝑊𝑊32

′′ + ℎ4𝑊𝑊42
′′ + 𝑏𝑏2′′

𝒉𝒉𝟒𝟒×𝟏𝟏 = 𝑾𝑾𝟒𝟒×𝟑𝟑
′ 𝒂𝒂𝟑𝟑×𝟏𝟏 + 𝒃𝒃𝟒𝟒×𝟏𝟏

′

𝒐𝒐𝟐𝟐×𝟏𝟏 = 𝑾𝑾𝟐𝟐×𝟒𝟒
′′ 𝒉𝒉𝟒𝟒×𝟏𝟏 + 𝒃𝒃𝟐𝟐×𝟏𝟏

′′

Building Blocks

69

Activation Functions
Activation (non-linearity) function is an entry-wise function

𝑓𝑓:ℝ → ℝ

𝒉𝒉𝟒𝟒×𝟏𝟏 = 𝒇𝒇(𝑾𝑾𝟒𝟒×𝟑𝟑
′ 𝒂𝒂𝟑𝟑×𝟏𝟏 + 𝒃𝒃𝟒𝟒×𝟏𝟏

′)

𝒐𝒐𝟐𝟐×𝟏𝟏 = 𝑾𝑾𝟐𝟐×𝟒𝟒
′′ 𝒉𝒉𝟒𝟒×𝟏𝟏 + 𝒃𝒃𝟐𝟐×𝟏𝟏

′′

ℎ1 = 𝑎𝑎1𝑊𝑊11
′ + 𝑎𝑎2𝑊𝑊21

′ + 𝑎𝑎3𝑊𝑊31
′ + 𝑏𝑏1′

ℎ4 = 𝑎𝑎1𝑊𝑊14
′ + 𝑎𝑎2𝑊𝑊24

′ + 𝑎𝑎3𝑊𝑊34
′ + 𝑏𝑏4′

ℎ2 = 𝑎𝑎1𝑊𝑊12
′ + 𝑎𝑎2𝑊𝑊22

′ + 𝑎𝑎3𝑊𝑊32
′ + 𝑏𝑏1′

ℎ3 = 𝑎𝑎1𝑊𝑊13
′ + 𝑎𝑎2𝑊𝑊23

′ + 𝑎𝑎3𝑊𝑊33
′ + 𝑏𝑏1′

Building Blocks

70

Activation Functions
Activation (non-linearity) function is an entry-wise function

𝑓𝑓:ℝ → ℝ

Why activation functions?
• What if we do not have activation functions

𝒐𝒐 = 𝑾𝑾′′𝒉𝒉 + 𝒃𝒃′′
𝒐𝒐 = 𝑾𝑾′′ 𝑾𝑾′𝒂𝒂 + 𝒃𝒃′ + 𝒃𝒃′′
𝒐𝒐 = 𝑾𝑾′′𝑾𝑾′𝒂𝒂 + 𝑾𝑾′′𝒃𝒃′ + 𝒃𝒃′′

Define 𝑊𝑊′′′ = 𝑊𝑊′′𝑊𝑊′ and 𝑏𝑏′′′ = 𝑊𝑊′′𝑏𝑏′ + 𝑏𝑏′′

A multi-layer linear network is the same as a 1-layer network (with some caveats)

Deep Neural Networks

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

output of first layer

• So far, words (and features) are atomic symbols:

• “hotel”, “conference”, “walking”, “___ing”

• But neural networks take continuous vector inputs

• How can we bridge this gap?

• One-hot vectors

 hotel = 0 0 0 ⋯0 0 1 0 0 0 0 0 0
conference = 0 0 0 ⋯0 0 0 0 0 0 1 0 0

• Dimensionality: size of the vocabulary

• Can be >10M for web-scale corpora

• Problems?

One-hot Word Representations
Building Blocks

73

• One-hot vectors
 hotel = 0 0 0 ⋯ 0 0 1 0 0 0 0 0 0
conference = 0 0 0 ⋯0 0 0 0 0 0 1 0 0

• Problems?
• Information sharing? “hotel” vs. “hotels”

One-hot Word Representations
Building Blocks for Neural NLP

74

• Each word is represented using a dense low-dimensional vector
• Low-dimensional << vocabulary size

• If trained well, similar words will have similar vectors
• How to train? What objective to maximize?

• As part of task training (e.g., supervised training)
• Pre-training (more on this later)

Word Embeddings
Building Blocks

75

Training Neural Networks
• No hidden layer → same as logistic regression (convex, guaranteed to

converge)

• With hidden layers:

○ Latent units → not convex

○ What do we do?

■ Back-propagate the gradient

■ Based on the chain rule

■ About the same, but no guarantees

76

• One of the most basic neural models

• Example: sentiment classification

• Input: text document

• Classes: very positive, positive, neutral, negative, very negative

• We discussed doing this with a bag-of-words feature-based model

• What would be the neural equivalent?

• Concatenate all vectors?

• Problem: different documents → different input length

• Instead: sum, average, etc.

Neural Bag of Words

77

Deep Averaging Networks (Iyyer et al. 2015)
Neural Bag of Words

78

IMDB Sentiment Analysis

BOW + linear model 88.23

NBOW DAN 89.4

Neural Networks: Practical Tips
• Select network structure appropriate for the problem

○ Window vs. recurrent vs. recursive (will discuss throughout the semester)

• Parameter initialization

○ Model is powerful enough?

■ If not, make it larger

■ Yes, so regularize, otherwise it will overfit

• Gradient checks to identify bugs

○ If you build from scratch

• Know your non-linearity function and its gradient

○ Example tanh(𝑥𝑥)

■ 𝜕𝜕
𝜕𝜕𝜕𝜕

tanh(𝑥𝑥) = 1 − tanh2(𝑥𝑥)

79

• Verify value of initial loss when using softmax
• Perfectly fit a single example, then mini-batch, then train
• If learning fails completely, maybe gradients stuck

• Check learning rate
• Verify parameter initialization
• Change non-linearity functions

Debugging
Practical Tips

80

• Very expressive models, can overfit easily

• It will look great on the training data, but everything else will be terrible

• Some potential cures

• Reduce model size (but not too much)

• L1 and L2 regularization

• Early stopping (e.g., patience)

• Learning rate scheduling

• Dropout (Hinton et al. 2012)

• Randomly set 50% of inputs in each layer to 0

Avoid Overfitting
Practical Tips

81

• The descriptive language of deep learning models
• Functional description of the required computation
• Can be instantiated to do two types of computation:

• Forward computation
• Backward computation

Computation Graphs

82

A node is a {tensor, matrix, vector, scalar} value

expression:

graph:

83

expression:

graph:

An edge represents a function argument
(and also data dependency). They are just
pointers to nodes.
A node with an incoming edge is a function of
that edge’s tail node.

A node knows how to compute its value and the
value of its derivative w.r.t each argument (edge)
times a derivative of an arbitrary input .

84

expression:

graph:

Functions can be nullary, unary,
binary, … n-ary. Often they are unary or binary.

85

expression:

graph:

Computation graphs are directed and acyclic (usually)

86

expression:

graph:

87

expression:

graph:

88

expression:

graph:

variable names are just labelings of nodes.
89

• Graph construction

• Forward propagation

• Loop over nodes in topological order

• Compute the value of the node given its inputs

• Given my inputs, make a prediction (or compute an “error” with respect to a “target output”)

• Backward propagation

• Loop over the nodes in reverse topological order starting with a final goal node

• Compute derivatives of final goal node value with respect to each edge’s tail node

• How does the output change if I make a small change to the inputs?

Algorithms
Computation Graphs

90

Forward Propagation

91

graph:

Forward Propagation

92

graph:

Forward Propagation

93

graph:

Forward Propagation

94

graph:

Forward Propagation

95

graph:

graph:

Forward Propagation

96

graph:

Forward Propagation

97

graph:

Forward Propagation

98

• Static declaration

• Phase 1: define an architecture
(maybe with some primitive flow control like loops and conditionals)

• Phase 2: run a bunch of data through it to train the model and/or make predictions

• Dynamic declaration (a.k.a define-by-run)

• Graph is defined implicitly (e.g., using operator overloading) as the forward
computation is executed

• Graph is constructed dynamically

• This allows incorporating conditionals and loops into the network definitions easily

Two Software Models
Constructing Graphs

99

• Two senses to processing your data in batch
• Computing gradients for more than one example at a time to update

parameters during learning
• Processing examples together to utilize all available resources

• CPU: made of a small number of cores, so can handle some
amount of work in parallel

• GPU: made of thousands of small cores, so can handle a lot of
work in parallel

• Process multiple examples together to use all available cores

Batching

100

• Relatively easy when the network looks exactly the same for all
examples

• More complex with language data: documents/sentences/words
have different lengths

• Frameworks provide different methods to help common cases,
but still require work on the developer side

• Key concept is broadcasting:
https://pytorch.org/docs/stable/notes/broadcasting.html

Batching

101

https://pytorch.org/docs/stable/notes/broadcasting.html

Batching
MLP Sketch

102

• Input and intermediate results
become tensors — batch is
another dimension!

• Do not add batch dimension
of parameters! What happens
then?

103

Complex Network Architectures
Batching

• Complex networks may include
different parts with varying
length (more about this later)

• In the extreme, it may be
complex to batch complete
examples this way

• But: you can still batch sub-
parts across examples, so you
alternate between batched and
non-batched computations

Sentences

Alice gave a message to Bob

PPNP

VP

VP

S

Documents
This film was completely unbelievable.

The characters were wooden and the plot was absurd.

That being said, I liked it.

Backpropagation
But what about the gradient w.r.t. W_1?

Apply the chain rule

104

Are we going to compute derivatives
ourselves every time?

No, we will use frameworks that we will do them for us!

● Deep Learning with PyTorch: A 60 Minute Blitz
● CS 5350/6350 Machine Learning Fall 2023: PyTorch Tutorial

105

import torch
from torchvision.models import resnet18, ResNet18_Weights
model = resnet18(weights=ResNet18_Weights.DEFAULT)
data = torch.rand(1, 3, 64, 64)
labels = torch.rand(1, 1000)
prediction = model(data) # forward pass
loss = (prediction - labels).sum()
loss.backward() # backward pass; autograd calculates and stores the gradients for each model
parameter in the parameter's .grad attribute.
optim = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9)
optim.step() #gradient descent; optimizer adjusts each parameter by its gradient stored in .grad

https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html
https://youtu.be/apJL7lzR3cg?si=XOqsH2nLzCpbjv-A

	Text Classification 2 / Neural Network Basics
	Logistics
	Recap: Text Classification
	Recap: Text Classification
	Binary classification in logistic regression
	Features in logistic regression
	How to do classification
	Formalizing “sum is high”
	The problem: z isn't a probability, it's just a number!
	The probabilistic classifier
	Where do the weights (W) come from?
	Learning components in LR
	Loss function: the distance between ŷ and y
	Training Objective: Maximize the Likelihood of the Training Data.
	Training Data
	Deriving the objective for a single observation x
	Deriving the objective for a single observation x
	Deriving the objective for a single observation x
	Deriving the objective for a single observation x
	Deriving the objective for a single observation x
	Deriving the objective for a single observation x
	Deriving the objective for a single observation x
	Deriving cross-entropy loss for a single observation x
	Our goal: minimize the loss
	Let's see if this works for our sentiment example
	Let's see if this works for our sentiment example
	Let's see if this works for our sentiment example
	Let's see if this works for our sentiment example
	Let's see if this works for our sentiment example
	Let's see if this works for our sentiment example
	Learning components
	Gradient Descent
	Let's first visualize for a single scalar w
	Let's first visualize for a single scalar w
	Let's first visualize for a single scalar w
	Our goal: minimize the loss
	Gradients
	How much do we move in that direction?
	Now let's consider N dimensions
	Imagine 2 dimensions, w and b
	Real gradients
	The gradient
	What are these partial derivatives for logistic regression?
	Gradient Descent Algorithm: Summary
	Hyperparameters
	Mini-batch training
	Overfitting
	Regularization
	L2 regularization (ridge regression)
	Multinomial Logistic Regression
	Multinomial Logistic Regression
	Multinomial Logistic Regression
	Sigmoid → softmax
	The softmax function
	Neural Nets Basics
	Neural Networks
	Neural Networks
	Why neural networks?
	Linear models assume separability
	Neural Networks: XOR
	Neural Networks: XOR
	Neural Networks: XOR
	Building Blocks
	Building Blocks
	Building Blocks
	Building Blocks
	Building Blocks
	Building Blocks
	Why activation functions?
	Deep Neural Networks
	Building Blocks
	Building Blocks for Neural NLP
	Building Blocks
	Training Neural Networks
	Neural Bag of Words
	Neural Bag of Words
	Neural Networks: Practical Tips
	Practical Tips
	Practical Tips
	Computation Graphs
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89
	Computation Graphs
	Forward Propagation
	Forward Propagation
	Forward Propagation
	Forward Propagation
	Forward Propagation
	Forward Propagation
	Forward Propagation
	Forward Propagation
	Constructing Graphs
	Batching
	Batching
	Batching
	Batching
	Backpropagation
	Are we going to compute derivatives ourselves every time?

