Text Classification 2 / Neural Network Basics

CSE 5525: Foundations of Speech and Language Processing https://shocheen.github.io/cse-5525-spring-2025/

The Ohio State University

Sachin Kumar (kumar.1145@osu.edu)

Slide Credits: Yulia Tsvetkov, Yoav Artzi, Greg Durrett

Logistics

- HW1 is due one week from today.
 - Have you started working on it?
 - Have you read the instructions / explored the code or dataset?
 - Any questions?
- Final Projects
 - A 1-page proposal for the final project will be due mid-February.
 - Please start forming your teams (2-3 typically)

Recap: Text Classification

- Inputs XLabels yPredictions ŷАяны замд түр зогсон тэнгэрийн
байдлыг ажиглаад хөдлөх зуурmonmonБеоград, 16. јун 2013. године –
Председник Владе РепубликеsrprusBeograd, 16. јил 2013. godine –
Predsednik Vlade Republike SrbijesrpbulNestrankarski Urad za vladno
odgovornost ZDA je objavilbulbul
- 1. How do we evaluate our classifier f?
 - \circ (Keyword for this section: ... evaluation)
- 2. How do we "digest" text into a form usable by a function?
 - (Keywords for this section: features, feature extraction, feature selection, representations)
- What kinds of strategies might we use to create our function *f*?
 (Keyword for this section: models)

Recap: Text Classification

- Inputs XLabels yPredictions ŷАяны замд түр зогсон тэнгэрийн
байдлыг ажиглаад хөдлөх зуурmonmonБеоград, 16. јун 2013. године –
Председник Владе РепубликеsrprusBeograd, 16. јил 2013. godine –
Predsednik Vlade Republike SrbijesrpbulNestrankarski Urad za vladno
odgovornost ZDA je objavilbulbul
- 1. How do we evaluate our classifier f?
 - \circ (Keyword for this section: ... evaluation)

2. How do we "digest" text into a form usable by a function?

- (Keywords for this section: features, feature extraction, feature selection, representations)
- What kinds of strategies might we use to create our function *f*?
 (Keyword for this section: models)

Binary classification in logistic regression

- Given a series of input/output pairs:
 - $(x^{(i)}, y^{(i)})$

- For each observation $\mathbf{x}^{(i)}$
 - We represent $x^{(i)}$ by a feature vector $\{x_1, x_2, ..., x_n\}$
 - We compute an output: a predicted class $\hat{y}^{(i)} \in \{0,1\}$

Features in logistic regression

- For feature x_i∈{x₁, x₂, ..., x_n}, weight w_i ∈{w₁, w₂, ..., w_n}
 tells us how important is x_i
 - $\mathbf{x}_i =$ "review contains 'awesome'": $\mathbf{w}_i = +10$
 - $x_i =$ "review contains horrible": $w_i = -10$
 - $\mathbf{x}_{k} =$ "review contains 'mediocre'": $\mathbf{w}_{k} = -2$

How to do classification

- For each feature x_i , weight w_i tells us importance of x_i
 - (Plus we'll have a bias b)
 - We'll sum up all the weighted features and the bias

$$z = \left(\sum_{i=1}^{n} w_i x_i\right) + b$$
$$z = w \cdot x + b$$

If this sum is high, we say y=1; if low, then y=0

Formalizing "sum is high"

- We'd like a principled classifier that gives us a probability
- We want a model that can tell us:
 - $\circ \quad p(y=1|x;\theta)$
 - $\circ \quad p(y=0|x;\theta)$

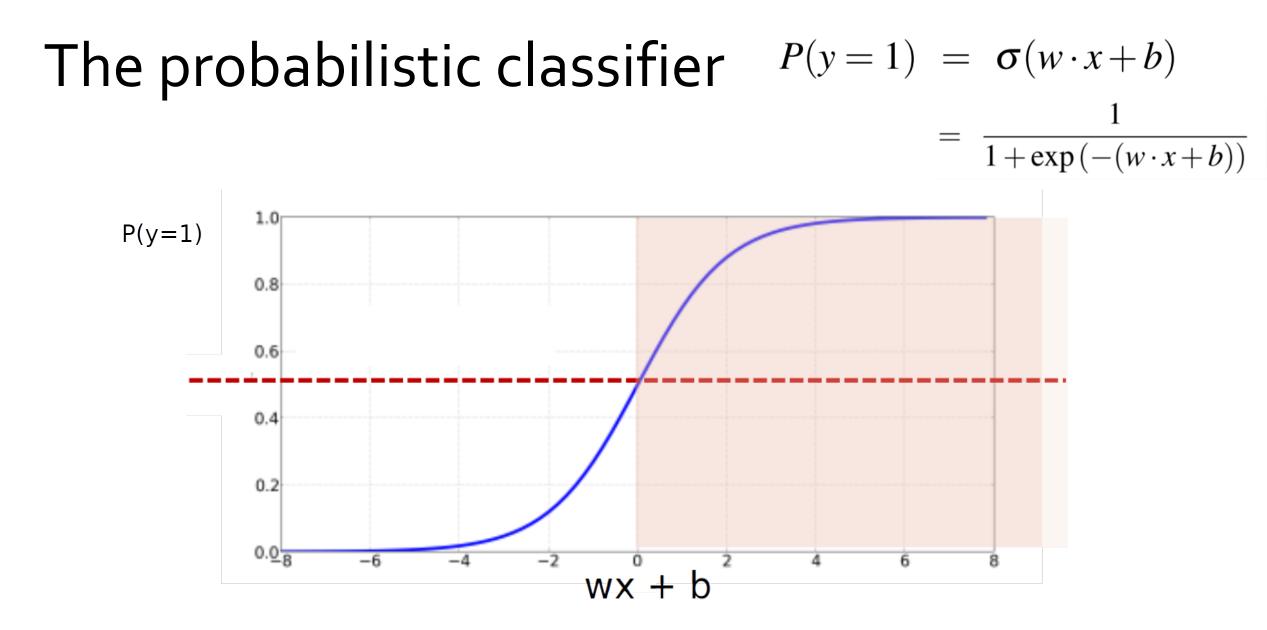
The problem: z isn't a probability, it's just a number!

• z ranges from -∞ to ∞

$$z = w \cdot x + b$$

• Solution: use a function of z that goes from 0 to 1

"sigmoid" or
$$y = \sigma(z) = \frac{1}{1 + e^{-z}} = \frac{1}{1 + \exp(-z)}$$



Where do the weights (W) come from?

- Supervised classification:
 - At training time, we know the correct label y (either 0 or 1) for each x.
 - $_{\circ}$ But what the system produces at inference time is an estimate $\hat{\mathbf{y}}$
- We want to set w and b to minimize the distance between our estimate $\hat{y}^{(i)}$ and the true $y^{(i)}$
 - We need a distance estimator: a loss function or an objective function
 - We need an optimization algorithm to update w and b to minimize the loss

Learning components in LR

A loss function:

cross-entropy loss

An optimization algorithm:

• gradient descent

Loss function: the distance between \hat{y} and y

We want to know how far is the classifier output $\hat{\mathbf{y}} = \sigma(w \cdot x + b)$

from the true output: y [= either 0 or 1]

We'll call this difference: $L(\hat{y}, y) = how much \hat{y}$ differs from the true y

Training Objective: Maximize the Likelihood of the Training Data.

We choose the parameters w,b that maximize

- the probability (aka likelihood)
- of the true y labels in the training data
- given the observations **x**

Training Data

- Our training data (also known as the training corpus) is a list of input/output pairs:
 - $\mathsf{D} = [(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), \dots, (\mathbf{x}^{(N)}, \mathbf{y}^{(N)})]$
 - Each x⁽ⁱ⁾ is a document (or a paragraph or a sentence) --- piece of text. In general also called an observation.
 - Each $y^{(i)}$ is a label (o or 1 in case of binary classification)

Deriving the objective for a single observation x **Goal:** maximize likelihood of the correct label under the model

The predicted probability for class 1 is \hat{y} .

If the correct label is 1, then the likelihood is \hat{y} . If the correct label is 0, then the likelihood is $1-\hat{y}$

We can express the likelihood from our classifier:

$$p(y|x) = \hat{y}^y (1-\hat{y})^{1-y}$$

Deriving the objective for a single observation x Goal: maximize likelihood

$$p(y|x) = \hat{y}^y (1-\hat{y})^{1-y}$$

Noting:

if y=1, this simplifies to \hat{y} if y=0, this simplifies to $1 - \hat{y}$

17

Deriving the objective for a single observation x Goal: maximize likelihood

$$p(y|x) = \hat{y}^y (1-\hat{y})^{1-y}$$

Now take the log of both sides (mathematically handy) Maximize:

$$\log p(y|x) = \log \left[\hat{y}^y (1-\hat{y})^{1-y} \right]$$
$$= y \log \hat{y} + (1-y) \log(1-\hat{y})$$

Goal: maximize likelihood

$$p(y|x) = \hat{y}^y (1-\hat{y})^{1-y}$$

Now take the log of both sides (mathematically handy) Maximize:

$$log p(y|x) = log [\hat{y}^{y} (1-\hat{y})^{1-y}]$$

= $y log \hat{y} + (1-y) log (1-\hat{y})$

Whatever values maximize $\log p(y|x)$ will also maximize p(y|x)

Goal: maximize probability of the correct label p(y|x)Maximize: $\log p(y|x) = \log \left[\hat{y}^y (1-\hat{y})^{1-y} \right]$ $= y \log \hat{y} + (1-y) \log(1-\hat{y})$

Now flip sign to turn this into a loss: something to minimize

Goal: maximize probability of the correct label p(y|x)Maximize: $\log p(y|x) = \log \left[\hat{y}^y (1-\hat{y})^{1-y} \right]$ $= y \log \hat{y} + (1-y) \log(1-\hat{y})$

Now flip sign to turn this into a loss: something to minimize Minimize:

$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y \log \hat{y} + (1-y) \log(1-\hat{y})]$$

Goal: maximize probability of the correct label p(y|x)Maximize: $\log p(y|x) = \log \left[\hat{y}^y (1-\hat{y})^{1-y} \right]$ $= y \log \hat{y} + (1-y) \log(1-\hat{y})$

Now flip sign to turn this into a **cross-entropy loss**: something to minimize

Minimize:

$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y \log \hat{y} + (1-y) \log(1-\hat{y})]$$

Deriving cross-entropy loss for a single observation x

Goal: maximize probability of the correct label p(y|x)Maximize: $\log p(y|x) = \log \left[\hat{y}^y (1-\hat{y})^{1-y} \right]$ $= y \log \hat{y} + (1-y) \log(1-\hat{y})$

Now flip sign to turn this into a **cross-entropy loss**: something to minimize

Minimize:
$$L_{CE}(\hat{y}, y) = -\log p(y|x) = -[y \log \hat{y} + (1-y) \log(1-\hat{y})]$$

Or, plug in definition of $\hat{y} = \sigma(w \cdot x + b)$

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

Our goal: minimize the loss

Let's make explicit that the loss function is parameterized by weights $\theta = (w,b)$

• And we'll represent \hat{y} as $f(x; \theta)$ to make the dependence on θ more obvious

We want the weights that minimize the loss, averaged over all examples:

$$\hat{\theta} = \operatorname{argmin}_{\theta} \frac{1}{m} \sum_{i=1}^{m} L_{CE}(f(x^{(i)}; \theta), y^{(i)})$$

$$L_{CE}(\hat{y}, y)$$

We want loss to be:

- smaller if the model estimate $\hat{\mathbf{y}}$ is close to correct
- bigger if model is confused

Let's first suppose the true label of this is y=1 (positive)

It's hokey . There are virtually no surprises , and the writing is second-rate . So why was it so enjoyable ? For one thing , the cast is great . Another nice touch is the music . I was overcome with the urge to get off the couch and start dancing . It sucked me in , and it'll do the same to you .

True value is y=1 (positive). How well is our model doing?

$$p(+|x) = P(Y = 1|x) = \sigma(w \cdot x + b)$$

= $\sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)$
= $\sigma(.833)$
= 0.70

Pretty well!

True value is y=1 (positive). How well is our model doing?

$$p(+|x) = P(Y = 1|x) = \sigma(w \cdot x + b)$$

= $\sigma([2.5, -5.0, -1.2, 0.5, 2.0, 0.7] \cdot [3, 2, 1, 3, 0, 4.19] + 0.1)$
= $\sigma(.833)$
= 0.70

Pretty well! What's the loss?

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

=
$$-[\log \sigma(\mathbf{w} \cdot \mathbf{x} + b)]$$

=
$$-\log(.70)$$

=
$$.36$$

Suppose the true value instead was y=0 (negative).

$$p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b)$$

= 0.30

Suppose the true value instead was y=0 (negative).

$$p(-|x) = P(Y = 0|x) = 1 - \sigma(w \cdot x + b)$$

= 0.30

What's the loss?

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

=
$$-[\log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

=
$$-\log (.30)$$

=
$$1.2$$

The loss when the model was right (if true y=1)

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$$

= -[log \sigma(\mathbf{w} \cdot \mathbf{x} + b)]
= -log(.70)
= .36

The loss when the model was wrong (if true y=0) $L_{CE}(\hat{y}, y) = -[y \log \sigma(\mathbf{w} \cdot \mathbf{x} + b) + (1 - y) \log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$ $= -[\log (1 - \sigma(\mathbf{w} \cdot \mathbf{x} + b))]$ $= -\log (.30)$ = 1.2

Sure enough, loss was bigger when model was wrong!

Learning components

A loss function:

cross-entropy loss

An optimization algorithm:

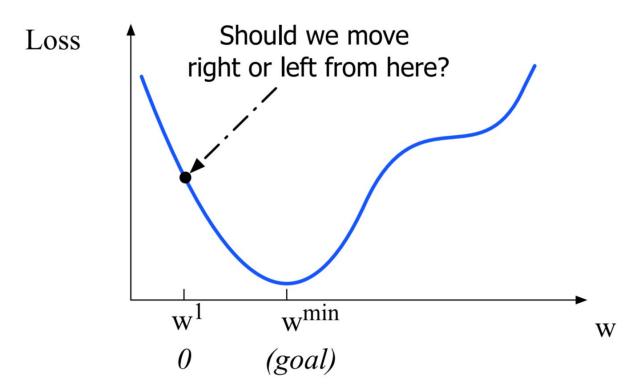
• gradient descent

Gradient Descent

- Gradient Descent algorithm
 - is used to optimize the weights for a machine learning model

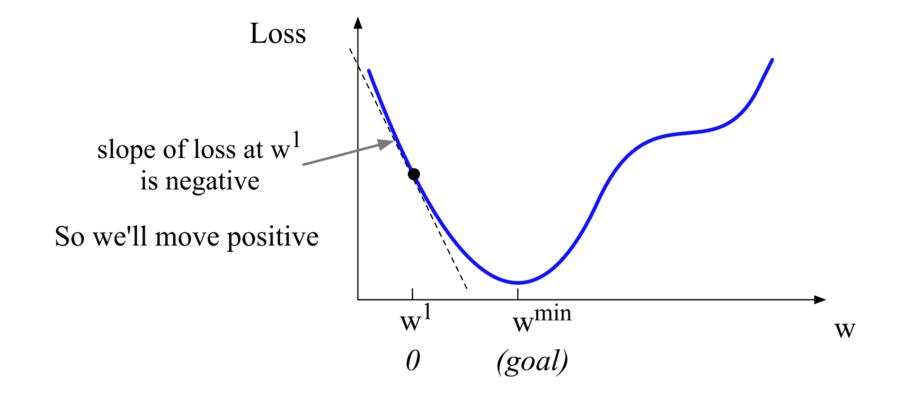
Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller? A: Move w in the reverse direction from the slope of the function



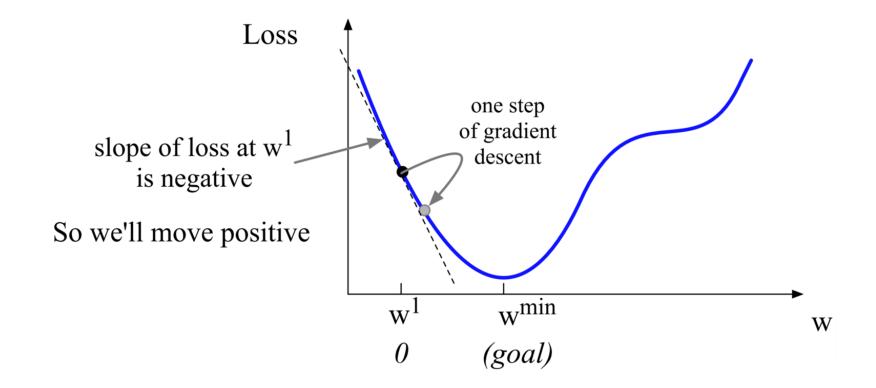
Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller? A: Move w in the reverse direction from the slope of the function



Let's first visualize for a single scalar w

Q: Given current w, should we make it bigger or smaller? A: Move w in the reverse direction from the slope of the function



Our goal: minimize the loss

For logistic regression, loss function is **convex**

- A convex function has just one minimum
- Gradient descent starting from any point is guaranteed to find the minimum
 - (Loss for neural networks is non-convex)

Gradients

The **gradient** of a function of many variables is a vector pointing in the direction of the greatest increase in a function.

Gradient Descent: Find the gradient of the loss function at the current point and move in the **opposite** direction.

How much do we move in that direction?

- The value of the gradient (slope in our example) $\frac{d}{dw}L(f(x;w),y)$ • weighted by a learning rate η
- Higher learning rate means move w faster

$$w^{t+1} = w^t - \eta \frac{d}{dw} L(f(x;w), y)$$

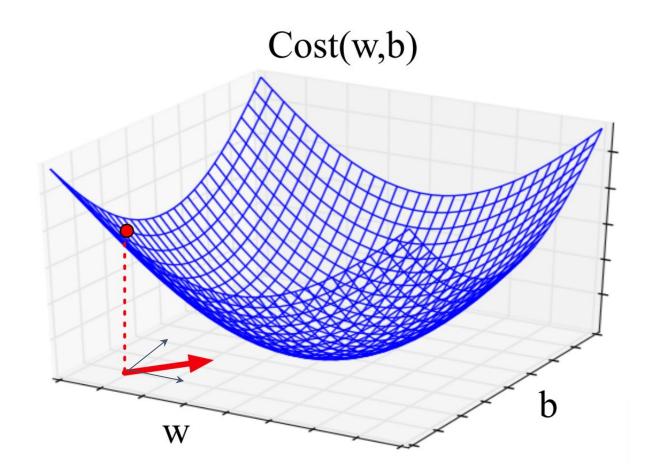
Now let's consider N dimensions

We want to know where in the N-dimensional space (of the N parameters that make up θ) we should move.

The gradient is just such a vector; it expresses the directional components of the sharpest slope along each of the N dimensions.

Imagine 2 dimensions, w and b

Visualizing the gradient vector at the red point It has two dimensions shown in the x-y plane



Real gradients

Are much longer; lots and lots of weights

For each dimension w_i the gradient component i tells us the slope with respect to that variable.

- "How much would a small change in $\overline{w_i}$ influence the total loss function $L?^{\prime\prime}$
- We express the slope as a partial derivative ∂

The gradient is then defined as a vector of these partials.

The gradient

We'll represent \hat{y} as $f(x; \theta)$ to make the dependence on θ more obvious:

$$\nabla_{\theta} L(f(x;\theta),y)) = \begin{bmatrix} \frac{\partial}{\partial w_1} L(f(x;\theta),y) \\ \frac{\partial}{\partial w_2} L(f(x;\theta),y) \\ \vdots \\ \frac{\partial}{\partial w_n} L(f(x;\theta),y) \end{bmatrix}$$

The final equation for updating θ based on the gradient is thus:

$$\theta_{t+1} = \theta_t - \eta \nabla L(f(x; \theta), y)$$

What are these partial derivatives for logistic regression? The loss function

$$L_{CE}(\hat{y}, y) = -[y \log \sigma(w \cdot x + b) + (1 - y) \log (1 - \sigma(w \cdot x + b))]$$

The elegant derivative of this function

$$\frac{\partial L_{CE}(\hat{y}, y)}{\partial w_j} = [\sigma(w \cdot x + b) - y] x_j$$
$$= (\hat{y} - y) \mathbf{x}_j$$

Gradient Descent Algorithm: Summary

- Given a dataset D = [(x, y)], a model with weights w=(w1, ... wn), and a loss function L(D, w).
- 2. Initialize w randomly
- 3. Compute gradient of L, ∇L Update $w \leftarrow w - \eta \nabla L$
- 4. Repeat 3
 - until convergence

Hyperparameters

The learning rate η is a hyperparameter

- too high: the learner will take big steps and overshoot
- too low: the learner will take too long

Hyperparameters:

- Briefly, a special kind of parameter for an ML model
- Instead of being learned by algorithm from supervision (like regular parameters), they are chosen by algorithm designer.

Mini-batch training

Gradient descent computes the loss over the entire dataset. That can be slow.

More common to compute gradient over batches of training instances.

Mini-batch training: m examples at every gradient step.

Overfitting

A model that perfectly match the training data has a problem.

It will also overfit to the data, modeling noise

- A random word that perfectly predicts y (it happens to only occur in one class) will get a very high weight.
- Failing to generalize to a test set without this word.

A good model should be able to generalize

Regularization

A solution for overfitting

Add a regularization term $R(\theta)$ to the loss function (for now written as maximizing logprob rather than minimizing loss)

$$\hat{\theta} = \operatorname{argmax}_{\theta} \sum_{i=1}^{m} \log P(y^{(i)} | x^{(i)}) - \alpha R(\theta)$$

Idea: choose an $R(\theta)$ that penalizes large weights

 fitting the data well with lots of big weights not as good as fitting the data a little less well, with small weights

L2 regularization (ridge regression)

The sum of the squares of the weights

$$R(\theta) = ||\theta||_2^2 = \sum_{j=1}^n \theta_j^2$$

L2 regularized objective function:

$$\hat{\theta} = \operatorname{argmax}_{\theta} \left[\sum_{i=1}^{m} \log P(y^{(i)} | x^{(i)}) \right] - \alpha \sum_{j=1}^{n} \theta_j^2$$

Multinomial Logistic Regression

Classification into more than 2 classes.

If >2 classes we use multinomial logistic regression

- = Softmax regression
- = Multinomial logit

= (defunct names : Maximum entropy modeling or MaxEnt)

Multinomial Logistic Regression

In binary classification, we have a set of weights w, one corresponding to each feature.

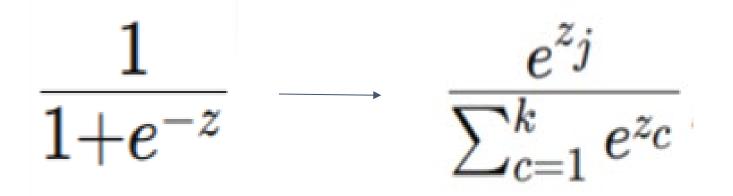
In N-class classification, we define a set of weights for each class, w_{y} : n weights for each feature

Multinomial Logistic Regression

- Binary: convert the features to a score (real number), and apply sigmoid
 - Score: $z = w \cdot x + b$
 - Probability of y=1: $\sigma(z)$

- N-class: convert the features in N scores (also called logits):
 - Scores: $[w_1 \cdot x + b, w_2 \cdot x + b, \dots] = [z_1, z_2, \dots]$
 - Convert to probabilities using a "softmax" function N-dimensional generalization of sigmoid.

Sigmoid \rightarrow softmax



Softmax gives you a vector (whose values sum up to 1)

The **softmax** function

• Turns a vector $z = [z_1, z_2, ..., z_k]$ of k arbitrary values (logits) into probabilities

softmax
$$(z_i) = \frac{\exp(z_i)}{\sum_{j=1}^k \exp(z_j)}$$
 $1 \le i \le k$

• The denominator $\sum_{i=1}^{k} e^{z_i}$ is used to normalize all the values into probabilities

softmax(z) =
$$\left[\frac{\exp(z_1)}{\sum_{i=1}^{k} \exp(z_i)}, \frac{\exp(z_2)}{\sum_{i=1}^{k} \exp(z_i)}, ..., \frac{\exp(z_k)}{\sum_{i=1}^{k} \exp(z_i)}\right]$$

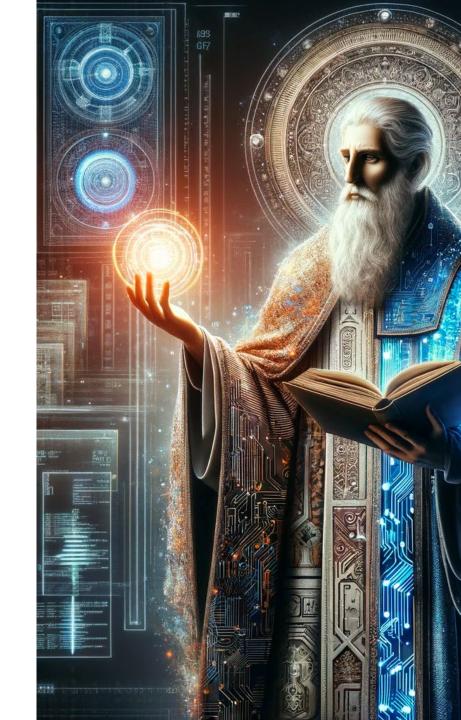
Neural Nets Basics

Neural Networks A Little Bit of History

- Neural network algorithms date to the 1980s, and design trace their origin to the 1950s
 - Originally inspired by early neuroscience
- Historically slow, complex, and unwieldy
- Now: term is abstract enough to encompass almost any model but useful!
- Dramatic shift started around 2013-15 away from linear, convex (like logistic regression) to *neural networks* (non-linear architecture, nonconvex)

Neural Networks **The Promise**

- Non-neural ML works well because of human-designed representations and input features
- ML becomes just optimizing weights **Representation learning** attempts to automatically learn good features and representations
- Deep learning attempts to learn multiple levels of representation of increasing complexity/abstraction

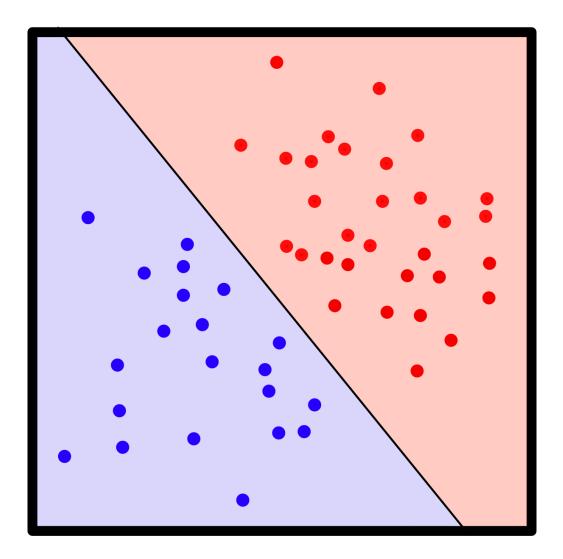


Why neural networks?

- Linear models like logistic regression require hand-designing features.
 - Requires knowledge of the task, domain, language.
 - Time consuming

• Linear models assume the classes are linearly separable given the features.

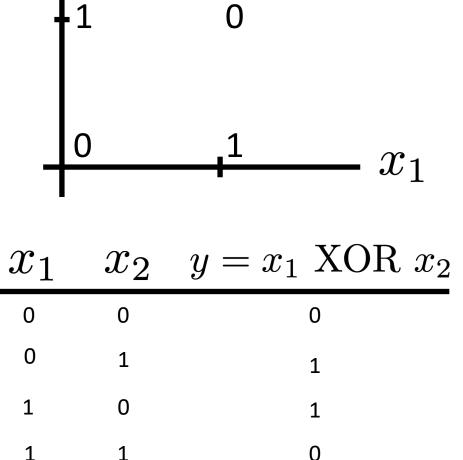
Linear models assume separability



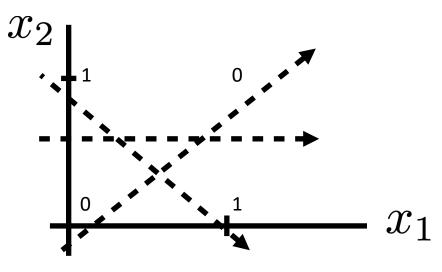
Neural Networks: XOR

- Let's see how we can use neural nets x_2 to learn a simple nonlinear function
- Inputs x_1, x_2

• Output y

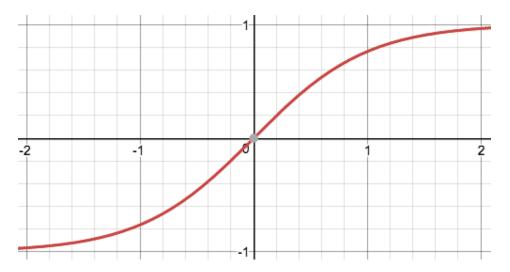


Neural Networks: XOR



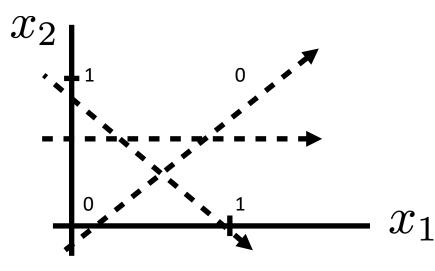
$$y = a_1 x_1 + a_2 x_2$$
 X
 $y = a_1 x_1 + a_2 x_2 + a_3 \tanh(x_1 + x_2)$
"or"

(looks like action potential in neuron)



x_1	x_2	$x_1 \text{ XOR } x_2$
0	0	0
0	1	1
1	0	1
1	1	0

Neural Networks: XOR

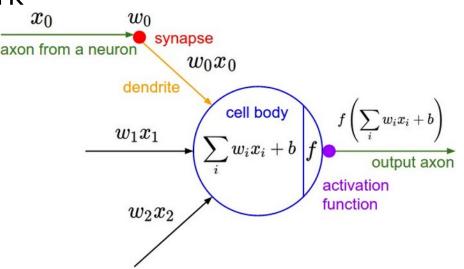


 $y = a_1 x_1 + a_2 x_2$ $y = a_1 x_1 + a_2 x_2 + a_3 \tanh(x_1 + x_2)$ $y = -x_1 - x_2 + 2\tanh(x_1 + x_2)$

x_1	x_2	$x_1 \text{ XOR } x_2$
0	0	0
0	1	1
1	0	1
1	1	0

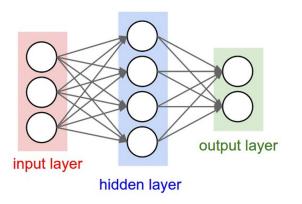
Building Blocks

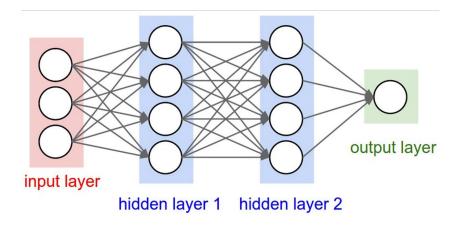
- Neural networks traditionally come with their own terminology baggage
 - Some of it is less common in more recent work
- Parameters:
 - Inputs: x_i
 - \circ Weights: w_i and b
 - \circ Activation function f
- If we drop the activation function, reminds you of something?

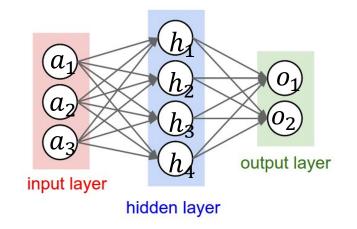


Building Blocks

- It gets interesting when you connect and stack neurons
- This modularity is one of the greatest strengths of neural networks
- Input vs. hidden vs. output layers
- The activations of the hidden layers are the learned representation



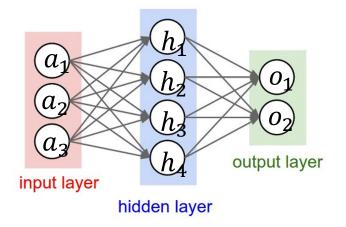




No activation/non-linearity function

Building Blocks Matrix Notation

$$\begin{split} h_1 &= a_1 W_{11}' + a_2 W_{21}' + a_3 W_{31}' + b_1' \\ h_2 &= a_1 W_{12}' + a_2 W_{22}' + a_3 W_{32}' + b_1' \\ h_3 &= a_1 W_{13}' + a_2 W_{23}' + a_3 W_{33}' + b_1' \\ h_4 &= a_1 W_{14}' + a_2 W_{24}' + a_3 W_{34}' + b_4' \end{split}$$



$$h_{4\times 1} = W'_{4\times 3}a_{3\times 1} + b'_{4\times 1}$$

$$\boldsymbol{o}_{2\times 1} = \boldsymbol{W}_{2\times 4}^{\prime\prime} \boldsymbol{h}_{4\times 1} + \boldsymbol{b}_{2\times 1}^{\prime\prime}$$

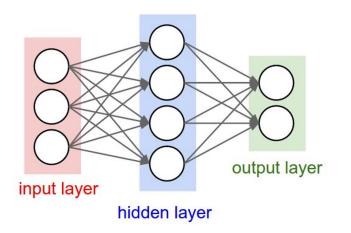
$$o_{1} = h_{1}W_{11}'' + h_{2}W_{21}'' + h_{3}W_{31}'' + h_{4}W_{41}'' + b_{1}''$$

$$o_{2} = h_{1}W_{12}'' + h_{2}W_{22}'' + h_{3}W_{32}'' + h_{4}W_{42}'' + b_{2}''$$

Building Blocks Activation Functions

Activation (non-linearity) function is an entry-wise function

 $f: \mathbb{R} \to \mathbb{R}$



$$h_{1} = a_{1}W'_{11} + a_{2}W'_{21} + a_{3}W'_{31} + b'_{1}$$

$$h_{2} = a_{1}W'_{12} + a_{2}W'_{22} + a_{3}W'_{32} + b'_{1}$$

$$h_{3} = a_{1}W'_{13} + a_{2}W'_{23} + a_{3}W'_{33} + b'_{1}$$

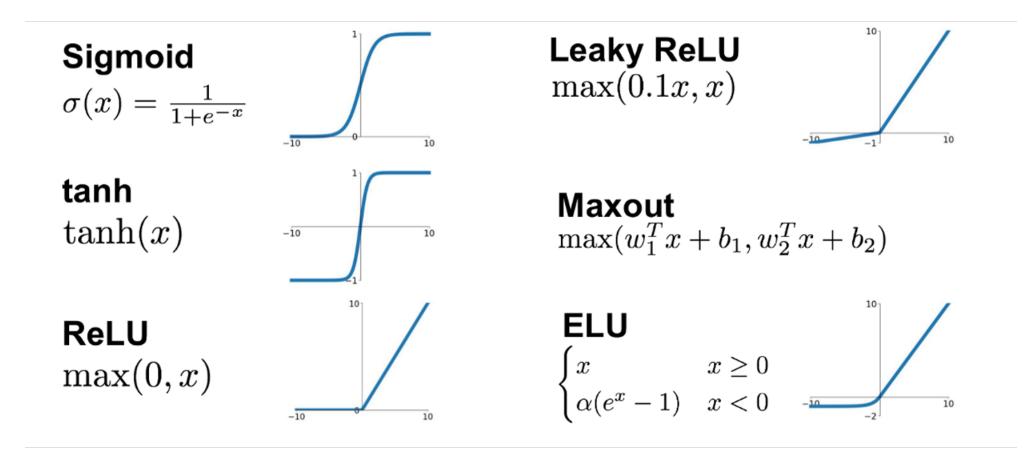
$$h_{4} = a_{1}W'_{14} + a_{2}W'_{24} + a_{3}W'_{34} + b'_{4}$$

$$h_{4\times 1} = f(W'_{4\times 3}a_{3\times 1} + b'_{4\times 1})$$

$$\boldsymbol{o}_{2\times 1} = \boldsymbol{W}_{2\times 4}^{\prime\prime} \boldsymbol{h}_{4\times 1} + \boldsymbol{b}_{2\times 1}^{\prime\prime}$$

Building Blocks Activation Functions

 $f: \mathbb{R} \to \mathbb{R}$



Why activation functions?

• What if we do not have activation functions

$$o = W''h + b''$$

 $o = W''(W'a + b') + b''$
 $o = W''W'a + W''b' + b''$

Define W''' = W''W' and b''' = W''b' + b''

A multi-layer linear network is the same as a 1-layer network (with some caveats)

Deep Neural Networks

$$egin{aligned} egin{aligned} egi$$

Taken from http://colah.github.io/posts/2014-03-NN-Manifolds-Topology/

Building Blocks One-hot Word Representations

- So far, words (and features) are atomic symbols:
 - "hotel", "conference", "walking", "____ing"
- But neural networks take continuous vector inputs
- How can we bridge this gap?
- One-hot vectors

- Dimensionality: size of the vocabulary
 - Can be >10M for web-scale corpora
- Problems?

Building Blocks for Neural NLP One-hot Word Representations

One-hot vectors

- Problems?
 - Information sharing? "hotel" vs. "hotels"

Building Blocks Word Embeddings

- Each word is represented using a dense low-dimensional vector
 - Low-dimensional << vocabulary size
- If trained well, similar words will have similar vectors
- How to train? What objective to maximize?
 - As part of task training (e.g., supervised training)
 - Pre-training (more on this later)

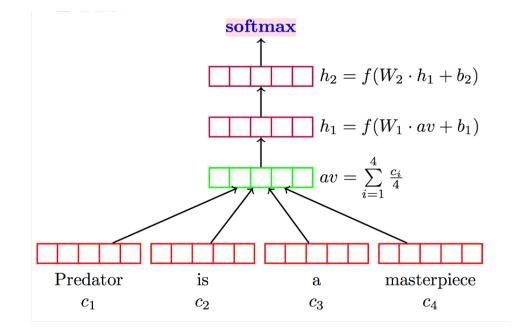
Training Neural Networks

- No hidden layer \rightarrow same as logistic regression (convex, guaranteed to converge)
- With hidden layers:
 - \circ Latent units \rightarrow not convex
 - $_{\circ}~$ What do we do?
 - Back-propagate the gradient
 - Based on the chain rule
 - About the same, but no guarantees

Neural Bag of Words

- One of the most basic neural models
- Example: sentiment classification
 - Input: text document
 - Classes: very positive, positive, neutral, negative, very negative
- We discussed doing this with a bag-of-words feature-based model
- What would be the neural equivalent?
 - Concatenate all vectors?
 - Problem: different documents \rightarrow different input length
 - Instead: sum, average, etc.

Neural Bag of Words Deep Averaging Networks (lyyer et al. 2015)



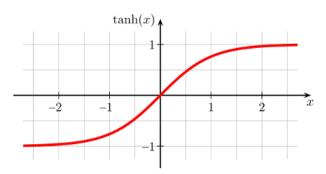
IMDB Sentiment Analysis

BOW + linear model	88.23
NBOW DAN	89.4

Neural Networks: Practical Tips

- Select network structure appropriate for the problem
 - Window vs. recurrent vs. recursive (will discuss throughout the semester)
- Parameter initialization
 - Model is powerful enough?
 - If not, make it larger
 - Yes, so regularize, otherwise it will overfit
- Gradient checks to identify bugs
 - \circ If you build from scratch
- Know your non-linearity function and its gradient
 - Example tanh(x)

 $\bullet \frac{\partial}{\partial x} \tanh(x) = 1 - \tanh^2(x)$



Practical Tips Debugging

- Verify value of initial loss when using softmax
- Perfectly fit a single example, then mini-batch, then train
- If learning fails completely, maybe gradients stuck
 - Check learning rate
 - Verify parameter initialization
 - Change non-linearity functions

Practical Tips Avoid Overfitting

- Very expressive models, can overfit easily
 - It will look great on the training data, but everything else will be terrible
- Some potential cures 😁
 - Reduce model size (but not too much)
 - L1 and L2 regularization
 - Early stopping (e.g., patience)
 - Learning rate scheduling
 - Dropout (Hinton et al. 2012)
 - Randomly set 50% of inputs in each layer to o

Computation Graphs

- The descriptive language of deep learning models
- Functional description of the required computation
- Can be instantiated to do two types of computation:
 - Forward computation
 - Backward computation

expression:

 \mathbf{X}

graph:

A node is a {tensor, matrix, vector, scalar} value

An **edge** represents a function argument (and also data dependency). They are just pointers to nodes.

A **node** with an incoming **edge** is a **function** of that edge's tail node.

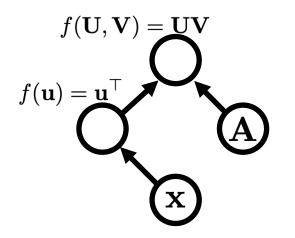
A **node** knows how to compute its value and the value of its derivative w.r.t each argument (edge) times a derivative of an arbitrary input $\frac{\partial \mathcal{F}}{\partial f(\mathbf{u})}$.

$$f(\mathbf{u}) = \mathbf{u}^{\top} \qquad \qquad \frac{\partial f(\mathbf{u})}{\partial \mathbf{u}} \frac{\partial \mathcal{F}}{\partial f(\mathbf{u})} = \left(\frac{\partial \mathcal{F}}{\partial f(\mathbf{u})}\right)^{\top}$$

expression: $\mathbf{x}^{\top} \mathbf{A}$

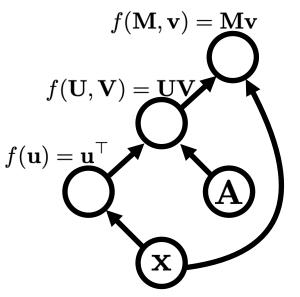
graph:

Functions can be nullary, unary, binary, ... *n*-ary. Often they are unary or binary.



expression: $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$

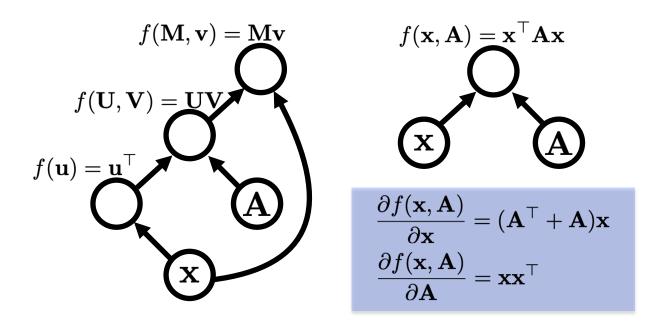
graph:

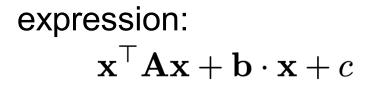


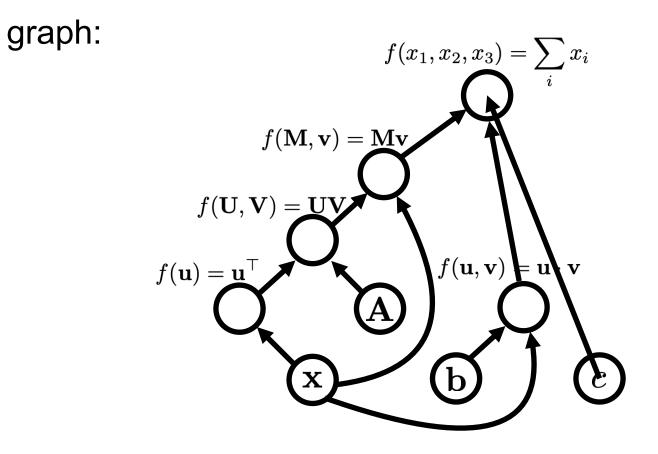
Computation graphs are directed and acyclic (usually)

expression: $\mathbf{x}^{\top} \mathbf{A} \mathbf{x}$

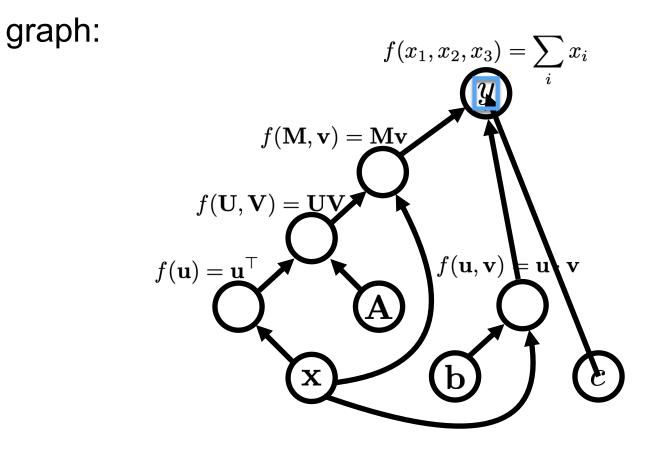
graph:







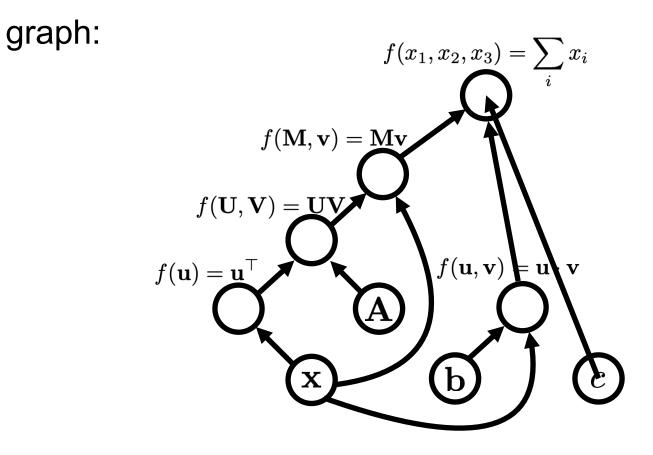
expression:
$$y = \mathbf{x}^{\top} \mathbf{A} \mathbf{x} + \mathbf{b} \cdot \mathbf{x} + c$$

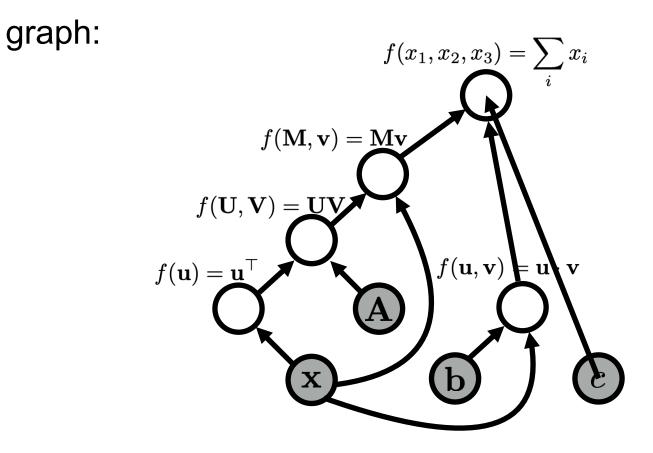


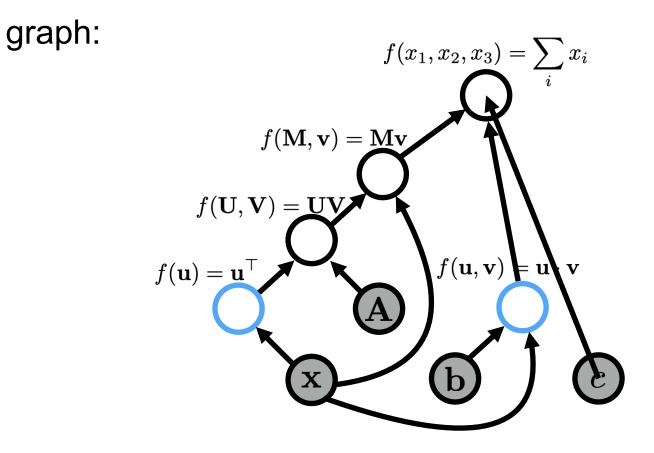
variable names are just labelings of nodes.

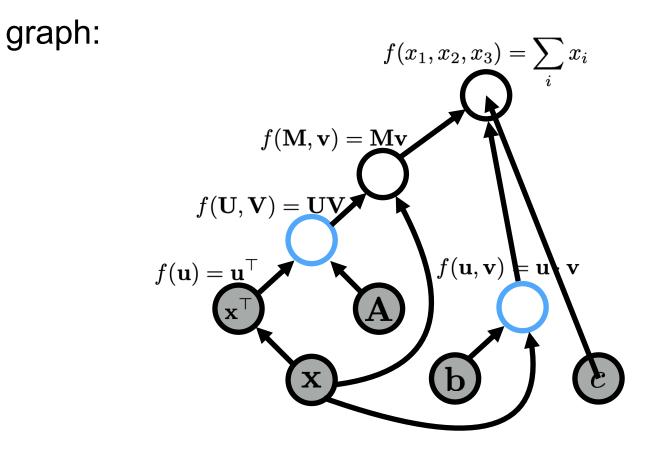
Computation Graphs

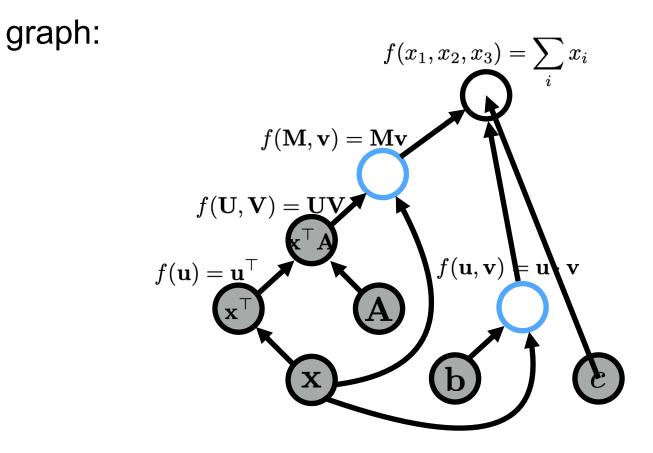
- Graph construction
- Forward propagation
 - Loop over nodes in topological order
 - Compute the value of the node given its inputs
 - Given my inputs, make a prediction (or compute an "error" with respect to a "target output")
- Backward propagation
 - Loop over the nodes in reverse topological order starting with a final goal node
 - Compute derivatives of final goal node value with respect to each edge's tail node
 - How does the output change if I make a small change to the inputs?

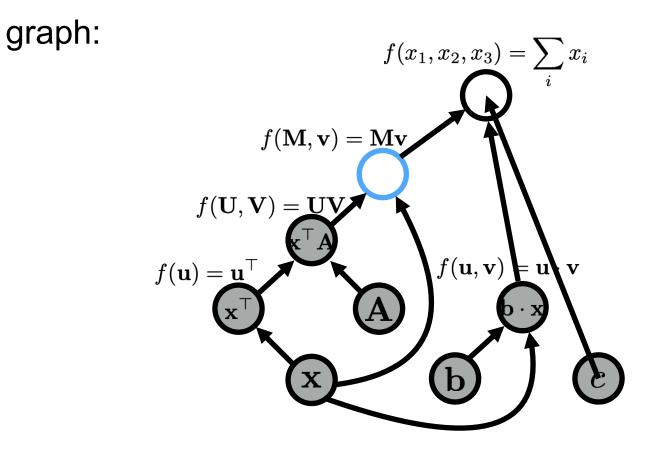


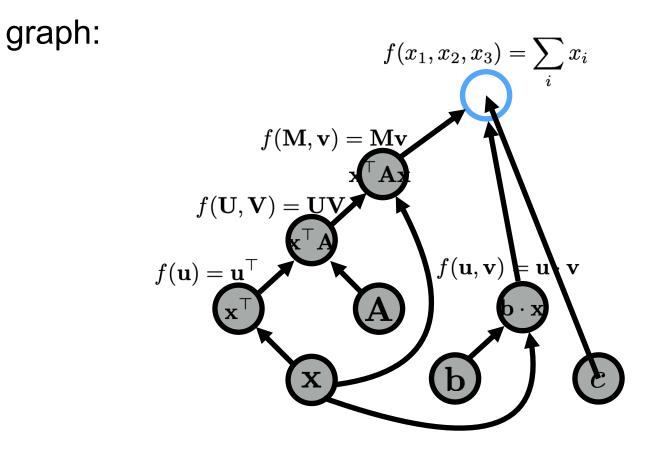


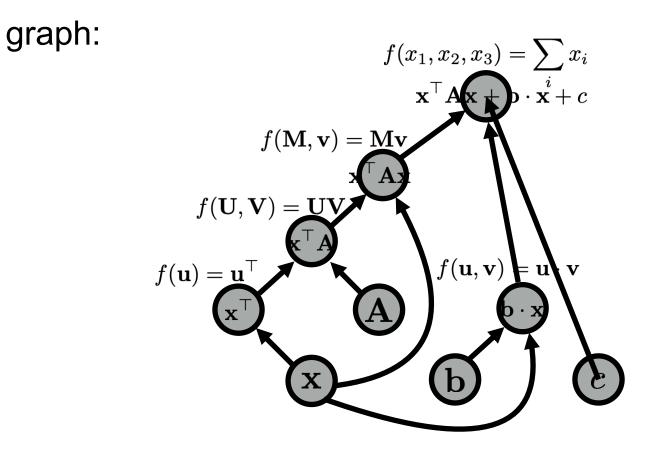












Constructing Graphs

- Static declaration
 - Phase 1: define an architecture (maybe with some primitive flow control like loops and conditionals)
 - Phase 2: run a bunch of data through it to train the model and/or make predictions
- Dynamic declaration (a.k.a define-by-run)
 - Graph is defined implicitly (e.g., using operator overloading) as the forward computation is executed
 - Graph is constructed dynamically
 - This allows incorporating conditionals and loops into the network definitions easily

Batching

- Two senses to processing your data in batch
 - Computing gradients for more than one example at a time to update parameters during learning
 - Processing examples together to utilize all available resources
- CPU: made of a small number of cores, so can handle some amount of work in parallel
- GPU: made of thousands of small cores, so can handle a lot of work in parallel
- Process multiple examples together to use all available cores

Batching

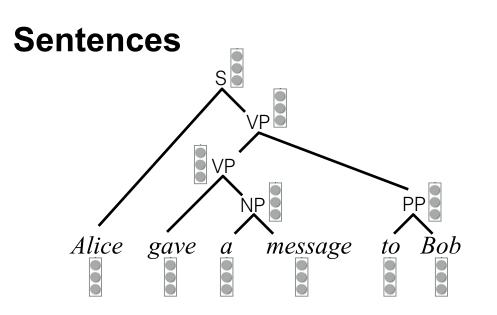
- Relatively easy when the network looks exactly the same for all examples
- More complex with language data: documents/sentences/words have different lengths
- Frameworks provide different methods to help common cases, but still require work on the developer side
- Key concept is broadcasting: <u>https://pytorch.org/docs/stable/notes/broadcasting.html</u>

Batching MLP Sketch

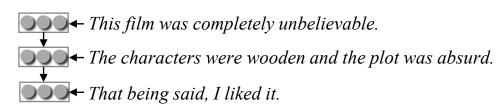


Batching Complex Network Architectures

- Complex networks may include different parts with varying length (more about this later)
- In the extreme, it may be complex to batch complete examples this way
- But: you can still batch subparts across examples, so you alternate between batched and non-batched computations



Documents



Backpropagation

But what about the gradient w.r.t. W_1? Apply the chain rule

$$\frac{\partial \mathcal{L}(x, i^*)}{\partial W_{1_{i,j}}} = \frac{\partial \mathcal{L}(x, i^*)}{\partial z} \cdot \frac{\partial z}{\partial W_{1_{i,j}}}$$
$$\frac{\partial z}{\partial W_{1_{i,j}}} = \frac{\partial g(a)}{\partial a}$$
$$a = W_1 f(x)$$

Are we going to compute derivatives ourselves every time?

No, we will use frameworks that we will do them for us!

- Deep Learning with PyTorch: A 60 Minute Blitz
- <u>CS 5350/6350 Machine Learning Fall 2023</u>: PyTorch Tutorial

```
import torch
from torchvision.models import resnet18, ResNet18_Weights
model = resnet18(weights=ResNet18_Weights.DEFAULT)
data = torch.rand(1, 3, 64, 64)
labels = torch.rand(1, 1000)
prediction = model(data) # forward pass
loss = (prediction - labels).sum()
loss.backward() # backward pass; autograd calculates and stores the gradients for each model
parameter in the parameter's .grad attribute.
optim = torch.optim.SGD(model.parameters(), lr=1e-2, momentum=0.9)
optim.step() #gradient descent; optimizer adjusts each parameter by its gradient stored in .grad
```


05