Language Modeling II

CSE 5525: Foundations of Speech and Language Processing https://shocheen.github.io/cse-5525-spring-2025/

The Ohio State University

Sachin Kumar (kumar.1145@osu.edu)

Logistics

- Homework 1 due date was Wednesday. How did everyone do?
 - Any thoughts, questions, concerns?

- Homework 2 is released. Due in two weeks (Feb 5)
 - Topic: Language Modeling with Transformers

Recap from last class

- What are language models
 - Distributions over sequences of "tokens".
 - Tokens can be: words, character, something else (more about that soon)
- What are they useful for
 - Measure likelihood of given sequence, ranking different sequences, generating sequences, and more
- How do you measure if a given language model is good
 - Perplexity
- How do you train a language model
 - N-gram LMs

This Class and Beyond: Neural Language Models

- Feedforward Neural Language Model
- Recurrent Neural Network (RNN)
- RNN + Attention
- Attention is all you need
 Transformer Architecture

The cat sat on the mat

context or prefix

 $P(X_t | X_1, ..., X_{t-1})$ next word context

 $P(X_t | X_{1}, ..., X_{t-1})$ next word context But more broadly, $P(X_1, ..., X_N)$ $= \prod_{t} P(X_{t} | X_{1}, ..., X_{t-1})$ Chain rule

 $P(X_t | X_{1}, ..., X_{t-1})$ next word context But more broadly, $P(X_1, ..., X_N)$

A variant

 $P(X_1, ..., X_N \mid Y_1, ..., Y_M)$ additional input Conditional Language Model

Language Models: N-grams

- Probabilistic n-gram models of text generation
 - LMs so far: count-based estimates of probabilities
- Counts are brittle and generalize poorly, so we added smoothing
- The quantity that we are focused on estimating (e.g., for trigram model):

$$\prod_{i} P(X_i | X_{i-2}, X_{i-1})$$

A Very Simple Approach

- Instead of having count-based distributions, parameterize them $P(X_i|X_{i-2}, X_{i-1}, \theta)$
- How would we model this with a neural network?
 - Can we use a feedforward network?

A Very Simple Approach

• A simple MLP-ish model

- $\mathbf{c} = [\phi(X_{i-1}); \phi(X_{i-2})] < \text{ concatenate the two vectors}$
- $l = W_2 \tanh(W_1 c + b_1) + b_2$ (two layers with tanh activation)
- $P(X_i | X_{i-2}, X_{i-1}, \theta) = \text{softmax}(l)$ (number of classes = vocabulary size)

 $\boldsymbol{\phi}$ is an embedding function, and $\boldsymbol{\theta} = (W_1, b_1, W_2, b_2, \boldsymbol{\phi})$

- The parameters are estimated by maximizing the log probability of the data
- During inference, you compute the neural network every time you need a value from the probability distribution

A Very Simple Approach

- A simple MLP-ish model
 - $\mathbf{x} = [\phi(X_{i-1}); \phi(X_{i-2})]$
 - $y = W_2 \tanh(W_1 x + b_1) + b_2$ (two layers with tanh activation)
 - $P(X_i | X_{i-2}, X_{i-1}, \theta) = \operatorname{softmax}(y)$ (number of classes = vocabulary size)

 $\boldsymbol{\phi}$ is an embedding function, and $\boldsymbol{\theta} = (W_1, b_1, W_2, b_2, \boldsymbol{\phi})$

• What is the advantage over n-gram models? Think smoothing

A Very Simple Approach

• A simple MLP-ish model

- $\mathbf{x} = [\phi(X_{i-1}); \phi(X_{i-2})]$
- $y = W_2 \tanh(W_1 x + b_1) + b_2$ (two layers with tanh activation)
- $P(X_i|X_{i-2}, X_{i-1}, \theta) = \operatorname{softmax}(y)$ (number of classes = vocabulary size)

 $\boldsymbol{\phi}$ is an embedding function, and $\boldsymbol{\theta} = (W_1, b_1, W_2, b_2, \boldsymbol{\phi})$

- What is the advantage over n-gram models?
 - Think smoothing
 - $softmax(y)_i = \frac{\exp(y_i)}{\sum_k \exp(y_k)}$
 - Why does softmax help with smoothing?
 - What are the costs?

Feedforward Neural Language Models

- The MLP approach can help with smoothing at some costs
- But essentially makes the same modeling choices
 - Assuming a finite horizon the Markov assumption
 - We adopted this assumption because of sparsity (i.e., smoothing) challenges
- Can neural networks allow us to revisit these assumptions?

Revisiting the Markov Assumption

- The Markov assumption was critical for generalization
- But: it's terrible for natural language!
 - "I ate a strawberry with some cream"
 - "I ate a strawberry that was picked in the field by the best farmer in the world with some cream"
- Dependencies can bridge arbitrarily long linear distances (similar to word2vec)
- It get even worse beyond the single sentence

An MLP with No Markov Assumption

• We need to model the parameterized distribution

•
$$P(X_i|X_1, ..., X_{i-2}, X_{i-1}, \theta)$$

- Why not just treat the context as a bag of words \rightarrow Deep Averaging Network
 - Then it doesn't matter how long it is
- Why is this a terrible idea?
 - Order matters a lot in language
 - But it worked so well for text categorization ...
 - What may work for tasks that just require focusing on salient words (e.g., topic categorization), is not sufficient for language models (i.e., <u>next</u>-word prediction)

Bag of Words

- BOW can handle arbitrary length
- But losses any notion of order
- Furthermore, dependencies are complex
 - Not following linear order
 - Importance follow complex patterns
 - "I ate a strawberry that was picked in the field by the best farmer in the world with some cream"
 - "I ate a strawberry that was picked in the field by the best farmer in the world with clippers"
 - The model needs to focus on different parts in the context to predict different words

LMs w/ Recurrent Neural Nets

• Core idea: apply a model repeatedly

outputs $\left\{egin{array}{c} \mathsf{output}\,\mathsf{distribution} \ \hat{m{y}}^{(t)} = \mathrm{softmax}\left(m{U}m{h}^{(t)} + m{b}_2
ight) \in \mathbb{R}^{|V|} \end{array}
ight.$ $m{h}^{(t)} = \sigma \left(m{W}_h m{h}^{(t-1)} + m{W}_e m{e}^{(t)} + m{b}_1
ight)$ $m{h}^{(0)}$ is the initial hidden state hidden states word embeddings $e^{(t)} = Ex^{(t)}$ Input embedding words / one-hot vectors $\boldsymbol{x}^{(t)} \in \mathbb{R}^{|V|}$

Recurrent Neural Networks

- Applied to sequential data iteratively.
 - $h_t = f(h_{t-1}, x_t; \theta)$
 - there are many ways to define f (we will only talk about simple RNNs)
 - Note this theta is shared across all the items in the sequence
- Why RNNs
 - They allow modeling infinite context (in theory)
 - They can retain sequential information as opposed to bag of words models
- Intuitively, at every hidden state, the model encodes all the necessary information required to predict the next token at that position
 - At least that's the hope

Recall: Conditional Language Models

• Useful for modeling tasks like machine translation, document summarization etc.

$$P(X_1, ..., X_N \mid Y_1, ..., Y_M)$$

How to train RNNs?

- Using our favorite algorithm: gradient descent using cross-entropy loss at every output step
- But backpropagation is applied over and over to the same parameters theta
 - Also known as backpropagation through time (BPTT)
- Issues with RNNs
 - Gradients can explode or vanish.
 - Solution: modify optimization algorithms / architectures (e.g. LSTMs) [won't discuss in this course, look at readings)

Other issues with RNNs

- Recurrent computation is slow, difficult to parallelize.
- Each hidden state is expected to store the entire information from the previous context
 - Is it even possible?

books

 $m{h}^{(3)}$

 $oldsymbol{W}_h$

 $e^{(3)}$

 W_e

 \boldsymbol{E}

students

 $x^{(2)}$

 $h^{(2)}$

 $oldsymbol{W}_h$

 $e^{(2)}$

 $oldsymbol{W}_h$

 $e^{(1)}$

Õ

 W_e

 \boldsymbol{E}

the

 $oldsymbol{x}^{(1)}$

lapto ps↓

 $h^{(4)}$

 $oldsymbol{W}_h$

 $oldsymbol{e}^{(4)}$

 W_e

 \mathbf{O}

 \boldsymbol{E}

opened

 $x^{(3)}$

ZC

 ${}^{\iota} \boldsymbol{U}^{\mathsf{O}}$

 W_e

 \boldsymbol{E}

their

 $x^{(4)}$

Solution: Attention

• What if the decoder at each step pays "attention" to a distribution of all of encoder's hidden states?

 Intuition: when we (humans) translate a sentence, we don't just consume the original sentence then regurgitate in a new language; we continuously look back at the original while focusing on different parts

RNNs with **Attention**

RNNs with Attention

- Attention allowed modelling longer context and obtain higher performance
- But
 - It is still slow because of linear computation in RNN
 - It still has gradient vanishing/exploding issues
- Solution: what if we removed the RNN component and only use attention
 - Attention is all you need (Vaswani et al 2017)

Transformers

• Replace the linear part with self-attention

Introduce residual connections to improve gradient flow (avoid gradient exploding / vanishing issues)

Introduce **positional embeddings** to encode sequential order

Self-Attention

- b^t is obtained based on the whole input sequence.
- can be parallelly computed.

Idea: replace any thing done by RNN with self-attention.

"Neural machine translation by jointly learning to align and translate" Bahdanau etl. 2014; "Attention is All You Need" Vaswani et al. 2017

[adopted from Hung-yi Lee] 31

Attention

- <u>Core idea</u>: on each step, use *direct connection* to *focus ("attend")* on a particular part of the context
 - Kind of similar to deep averaging networks but a "weighted average"

Defining Self-Attention

- Terminology:
 - **Query:** to match others
 - Key: to be matched
 - Value: information to be extracted
- Definition: Given a set of vector values, and a vector query, attention is a technique to compute a weighted sum of the value, dependent on the query.

q: query (to match others) $q_t = W^q x_t$ *k*: key (to be matched) $k_t = W^k x_t$

v: value (information to be extracted)

 $v_t = W^v x_t$

q: query (to match others) $q_t = W^q x_t$ *k*: key (to be matched) $k_t = W^k x_t$ *v*: value (information to be extracted)

$$v_t = W^{\nu} x_t$$

 $\sigma(z)_{t} = \frac{exp(z_{t})}{\sum_{j} exp(z_{j})}$ $\hat{\alpha}_{1,4}$ $\hat{\alpha}_{1,1}$ $\hat{\alpha}_{1,2}$ $\hat{\alpha}_{1,3}$ How much Softmax should "The" attend to other $\dot{\alpha}_{1,2}$ $\dot{\alpha}_{1,1}$ $\alpha_{1,3}$ $\dot{\alpha}_{1,4}$ positions? q_2 k_2 q_3 \dot{k}_3 $k_1 v_1$ q_4 q_1 v_2 v_3 k_4 v_4 00000 00000 00000 00000 x_1 χ_3 χ_4 x_2 The cat sat on 37

How to encode position information?

- Self attention doesn't have a way to know whether an input token comes before or after another
 - Position is important in sequence modeling in NLP
- A way to introduce position information is add individual position encodings to the input for each position in the sequence

$$x_t = x_t + pos_t$$

Where pos_t is a position vector

Properties of a good positional embedding

- It should output a unique encoding for each time-step (word's position in a sentence)
- Distance between any two time-steps should be consistent across sentences with different lengths.
 - The cat sat on the mat
 - The happy cat sat on the mat
- Our model should generalize to longer sentences without any efforts. Its values should be bounded.
- It must be deterministic.

Absolute position embeddings

- Define a maximum context length you model can encode: say 1000 tokens.
 - Create a separate embedding table for each position.
 - Each index 1, 2, 3, ... gets a enbedding.
 - Learn the embeddings with the model.
- Issues with Learned positions embeddings:
 - Maximum length that can be presented is limited (what if I get a 2000 token input)
 - Difficult to encode relative positions
 - The cat sat on the mat
 - The happy cat sat on the mat

Functional (and fixed) position embeddings Sinusoidal embeddings

where

 $\begin{bmatrix} \sin(\omega_1, t) \\ \cos(\omega_1, t) \end{bmatrix}$

The frequencies are decreasing along the vector dimension. It forms a geometric on the wavelengths.

Sinusoidal Embeddings: Intuition

0:	0	0	0	0	8:	1	0	0	0
1:	0	0	0	1	9:	1	0	0	1
2:	0	0	1	0	10 :	1	0	1	0
3 :	0	0	1	1	11:	1	0	1	1
4:	0	1	0	0	12:	1	1	0	0
5:	0	1	0	1	13:	1	1	0	1
6:	0	1	1	0	14:	1	1	1	0
7:	0	1	1	1	15:	1	1	1	1

Transformer Architecture: The Positional Encoding - Amirhossein Kazemnejad's Blog

Variants of Positional Embeddings

• Rotary Positional Embeddings (RoPE): [2104.09864] RoFormer: Enhanced Transformer with Rotary Position Embedding (arxiv.org)

• AliBi: [2108.12409] Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation (arxiv.org)

• No embeddings(!?): [2203.16634] Transformer Language Models without Positional Encodings Still Learn Positional Information (arxiv.org)

Self-Attention: Back to Big Picture

- Attention is a way to focus on particular parts of the input
- Can write it in matrix form:

 $\boldsymbol{b} = \operatorname{softmax}\left(\frac{\boldsymbol{Q}\boldsymbol{K}^{\mathrm{T}}}{\alpha}\right)\boldsymbol{V}$

• Efficient implementations

• Better at maintaining long-distance dependencies in the context.

Self-Attention

$$\boldsymbol{b} = \operatorname{softmax}\left(\frac{\boldsymbol{Q}\boldsymbol{K}^{\mathrm{T}}}{\alpha}\right)\boldsymbol{V}$$

The most important formula in deep learning after 2018

Self-Attention

What is self-attention? Self-attention calculates a weighted average of feature representations with the weight proportional to a similarity score between pairs of representations. Formally, an input sequence of n tokens of dimensions d, $X \in \mathbf{R}^{n \times d}$, is projected using three matrices $W_Q \in \mathbf{R}^{d \times d_q}$, $W_K \in \mathbf{R}^{d \times d_k}$, and $W_V \in \mathbf{R}^{d \times d_v}$ to extract feature representations Q, K, and V, referred to as query, key, and value respectively with $d_k = d_q$. The outputs Q, K, V are computed as

$$Q = XW_Q, \quad K = XW_K, \quad V = XW_V. \tag{1}$$

So, self-attention can be written as,

$$S = D(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_q}}\right)V,$$
 (2)

where softmax denotes a *row-wise* softmax normalization function. Thus, each element in S depends on all other elements in the same row.

9:08 PM · Feb 9, 2021 · Twitter Web App

553 Retweets 42 Quote Tweets 3,338 Likes

ΛQ

Multi-Headed Self-Attention

- Multiple parallel attention layers is quite common.
 - Each attention layer has its own parameters.

Variants of attention

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints (Ainslie et al., 2023)

How Do We Make it Deep?

• Add a feed-forward network on top it to add more capacity/expressivity.

Feed forward layer in a transformer

- A position-wise transformation consisting of:
 - A linear transformation, non-linear activation (e.g., ReLU), and another linear transformation.

$FF(c) = f(cW_1 + b_1)W_2 + b_2$

- This allows the model to apply another transformation to the contextual representations (or "post-process" them)
- Usually the dimensionality of the hidden feedforward layer is 2-8 times larger than the input dimension

A transformer block

x: input sequence

out = LayerNorm(c' + FF(c')) (Residual connection) $FF(c') = f(c'W_1 + b_1)W_2 + b_2$ c' = LayerNorm(c + x)

c = MultiHeadAttention(q, k, v)

 $q, k, v = \text{QKV}_{\text{Projection}}(x)$

More details of LayerNorm and Residual Connection next week

Transformer stack

• A stack of N transformer blocks (organized in N layers)

Encoder-Decoder Architectures

• Original transformer had two sub-models.

Encoder-Decoder Architectures

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/

Transformer [Vaswani et al. 2017]

- An encoder-decoder architecture built with attention modules.
- 3 forms of attention

Impact of Transformers

• Let to better predictive models of language ala GPTs!

Model	1	Layers	:	Heads	Perplexity
LSTMs (Grave et al., 2016)		-	Ι	-	40.8
QRNNs (Merity et al., 2018)		-		-	33.0
Transformer	ĺ	16		16	19.8

Impact of Transformers

A building block for a variety of LMs

Encoders

- **Examples: BERT**, RoBERTa, SciBERT.
- Captures bidirectional context. How do we pretrain them? *

Decoders

- **Examples:** GPT-2, GPT-3, Llama models, and many many more
- Other name: causal or auto-regressive language model *
- * Nice to generate from; can't condition on future words
- **Examples:** Transformer, T₅, BART *
- What's the best way to pretrain them? **

Transformer LMs + Scale = LLMs

- 2 main dimensions:
- Model size, pretraining data size

Photo credit: https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-generative-language-model/

Large Language Models

 Not only they improved performance on many NLP tasks, but exhibited new capabilities

Transformers - Summary

• Self-attention + positional embedding + others = NLP go brr

Much faster to train than any previous architectures, much easier to scale

- Perform on par or better than previous RNN based models
 - Ease of scaling allows to extract much better performance