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Logistics

* Homework 1 due date was Wednesday. How did everyone do?
* Any thoughts, questions, concerns?

 Homework 2 is released. Due in two weeks (Feb 5)
* Topic: Language Modeling with Transformers



Recap from last class

* What are language models
 Distributions over sequences of “tokens”.
* Tokens can be: words, character, something else (more about that soon)

* What are they useful for

. Medasure likelihood of given sequence, ranking different sequences, generating sequences,
and more

* How do you measure if a given language model is good
* Perplexity

* How do you train a language model
* N-gram LMs



This Class and Beyond: Neural Language Models

Feedforward Neural Language Model
Recurrent Neural Network (RNN)
RNN + Attention

. Attention is all you need
Transformer Architecture



The cat sat on the mat
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But more broadly,
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additional input

Conditional Language Model



Language Models: N-grams

. Probabilistic n-gram models of text generation
e LMs so far: count-based estimates of probabilities

« Counts are brittle and generalize poorly, so we added
smoothing

. The quantity that we are focused on estimating (e.q., for tri-
gram model):

HP(Xilxi—z»Xi—l)
i



Neural Language Models

AVery Simple Approach
* Instead of having count-based distributions, parameterize them

P(X;|Xi—2,Xi—1,6)
* How would we model this with a neural network?

®* Can we use a feedforward network?



Neural Language Models
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Neural Language Models
AVery Simple Approach

* A simple MLP-ish model

*x = [p(Xi-1); P(Xi-2)]
* y = W, tanh(W;x + b;) + b, (two layers with tanh activation)
¢ P(Xl |Xi—2 'Xi—ll 9) = softmax(y) (number of classes = vocabulary size)

¢ is an embedding function, and 8 = (Wy, by, W5, b,, ¢)

* What is the advantage over n-gram models?
Think smoothing

[Bengio et al. 2003]



Neural Language Models
AVery Simple Approach

* A simple MLP-ish model

* x= [p(Xi-1); P(Xi-)]
* y=W,tanh(W;x + b;) + b, (two layers with tanh activation)

* P(XilX;—5,X;_1,60) =softmax(y) (number of classes = vocabulary size)

¢ is an embedding function, and 8 = (W, by, W5, by, @)

* What s the advantage over n-gram models?
* Think smoothing

exp(y;)

° SoftmaX(y)i = m

* Why does softmax help with smoothing?

* What are the costs?

[Bengio et al. 2003]



Feedforward Neural Language Models

®* The MLP approach can help with smoothing at some costs

* But essentially makes the same modeling choices

- Assuming a finite horizon — the Markov assumption

- We adopted this assumption because of sparsity (i.e.,
smoothing) challenges

* Can neural networks allow us to revisit these assumptions?



Neural Language Models

Revisiting the Markov Assumption
* The Markov assumption was critical for generalization

* But: it's terrible for natural language!
- "| ate a strawberry with some cream”

- | ate a strawberry that was picked in the field by the best farmer in the
world with some cream”

* Dependencies can bridge arbitrarily long linear distances (similar to
word2vec)

* It get even worse beyond the single sentence

16



Neural Language Models
An MLP with No Markov Assumption

* We need to model the parameterized distribution

* P(X;|Xq, .. Xi—2,Xi—1,0)

* Why not just treat the context as a bag of words = Deep Averaging Network

- Then it doesn’t matter how long it is

* Why isthis a terrible idea?

- Order matters a lot in language

- But it worked so well for text categorization ...

- What may work for tasks that just require focusing on salient words (e.g., topic
categorization), is not sufficient for language models (i.e., next-word prediction)



Neural Language Models
Bag of Words

* BOW can handle arbitrary length
* But losses any notion of order

* Furthermore, dependencies are complex

- Not following linear order
- Importance follow complex patterns

> | ate a strawberry that was picked in the field by the best farmer
in the world with some cream”

> “| ate a strawberry that was picked in the field by the best farmer
in the world with clippers”

- The model needs to focus on different parts in the context to
predict different words




LMs w/ Recurrent Neural Nets

* Core idea: apply a model repeatedly

outputs { output distribution

hidden
states

Input

embedding
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Recurrent Neural Networks

* Applied to sequential data iteratively.
* hy = f(hi1,%:0)
* there are many ways to define f (we will only talk about simple RNNs)
* Note this theta is shared across all the items in the sequence

* Why RNNs

* They allow modeling infinite context (in theory)
* They can retain sequential information as opposed to bag of words models

* Intuitively, at every hidden state, the model encodes all the necessary
information required to predict the next token at that position

* At least that's the hope



Recall: Conditional Language Models

» Useful for modeling tasks like machine translation, document
summarization etc.
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Conditional LMs with RNNs
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How to train RNNs?

* Using our favorite algorithm: gradient descent using cross-entropy
loss at every output step

° Bhut backpropagation is applied over and over to the same parameters
theta

* Also known as backpropagation through time (BPTT)

* |ssues with RNNs

* Gradients can explode or vanish.

* Solution: modify optimization algorithms / architectures (e.g. LSTMs) [won't
discuss in this course, look at readings)



Other issues with RNNSs

* Recurrent computation is slow, difficult to
parallelize.

h(0)

* Each hidden state is expected to store the
entire information from the previous
context
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Machine Translation with RNNs
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Read the source only once, generate translation from memory . laptop
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[adopted from Chris Tanner]

Solution: Attention

* What if the decoder at each step pays “attention” to a
distribution of all of encoder’s hidden states?

* Intuition: when we (humans) translate a sentence, we don't just
consume the original sentence then requrgitate in a new
language; we continuously look back at the original while
focusing on different parts



RNNs with Attention

Context vector

) Key vectors (also the val%@lvector
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RNNs with Attention
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RNNs with Attention

* Attention allowed modelling longer context and obtain higher
performance

e But

* Itis still slow because of linear computation in RNN
* [t still has gradient vanishing/exploding issues

* Solution: what if we removed the RNN component and only use
attention

* Attentionis all you need (Vaswani et al 2017)



Transformers

Replace the linear part with self-attention

Introduce residual connections to improve gradient flow (avoid
gradient exploding / vanishing issues)

Introduce positional embeddings to encode sequential order



e btisobtained based on the whole

SElf'Atte ntiOn Input sequence.

* can be parallelly computed.

» Self-Attention Layer

Idea: replace any thing done by RNN with self-attention.

“Neural machine translation by jointly learning to align and translate” Bahdanau etl. 2014;
“Attentionis All You Need” Vaswani et al. 2017

[adopted from Hung-yi Lee]



Attention

* Core idea: on each step, use direct connection to focus (“attend”)

on a particular part of the context
* Kind of similar to deep averaging networks but a “weighted average”
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[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]
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https://arxiv.org/abs/1706.03762

Defining Self-Attention

* Terminology:
* Query: to match others
* Key: to be matched
» Value: information to be extracted

 Definition: Given a set of vector values, and a vector query,
attention is a technique to compute a weighted sum of the value,
dependent on the query.

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762] 33



https://arxiv.org/abs/1706.03762

q: query (to match others)
qe = Wix,

k: key (to be matched)
kt — kat

v:value (information to be extracted)
vt — vat

34



q: query (to match others)

qr = Wx,
k: key (to be matched)
kt — kat
v:value (information to be extracted)
vt — vat
q3 k3 U3 Qs ky v,
o (0] (0] (@) (0] (@)
o (0] (@) (@) (o) (@)
00000 00000
X3 X4
sat on
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q: query (to match others)

1, ,t
a, =9 %/
Lt N OJC k: key (to be matched)
Y v:value (information to be extracted)
Scaled dot product

How much

should "The”

attend to other

positions?

The cat sat on
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a1,1
How much 1
should “The”
attend to other
positions?

Softmax
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How to encode position information?

* Self attention dgesn’t have a wa¥ to know whether an input
token comes before or after anoth
* Position is important in sequence modelmg in NLP

* A way to introduce Eosmon mformatlon is add individual
p05|t|on encodings to the input for each position in the

sequence
Xy = X¢ + POSt

Where PO Sy is a position vector



pos; are unique vectors

3 pt = Z &y v

representing positional | ' word positions/ordering.
information ~
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One issue: the model doesn’t know
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Properties of a good positional embedding

[t should output a unique encoding for each time-step (word’s position in a
sentence)

Distance between any two time-steps should be consistent across sentences
with different lengths.

« The cat sat on the mat
- The happy cat sat on the mat

Our model should generalize to longer sentences without any etfforts. Its
values should be bounded.

It must be deterministic.

42



Absolute position embeddings

* Define a maximum context length you model can encode: say 1000
tokens.

* Create a separate embedding table for each position.
* Eachindexz, 2, 3, ... gets a enbedding.
* Learnthe embeddings with the model.

* Issues with Learned positions embeddings:
* Maximum length that can be presented is limited (what if | get a 2000 token input)

* Difficult to encode relative positions
* The cat sat on the mat
* The happy cat sat on the mat



Functional (and fixed) position embeddings

Sinusoidal embeddings

- sin(wq.t) |
cos(ws. t)
—(2) - sin(wy. t), ifi =2k
— t (3] — ? .
b f?) { cos(wg.t), ifi=2k+1 sin(w,. £)
R cos(ws. t)
Dt =
where
B 1
Wk = ok /d :
10000 sin(wgq/s- t)
] COS(wd/z. t) ]

The frequencies are decreasing along the vector dimension. It forms a geometric on the wavelengths.



Sinusoidal Embeddings: Intuition

0: 00O 8 : 000
1: 001 9 : 001
2 010 10 : 010
3 : 011 11 : 011
4 : 100 12 : 100
D : 101 13 : 101
0 : 110 14 : 110
7 111 15 : 111

Transformer Architecture: The Positional Encoding - Amirhossein Kazemnejad's Blog
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https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Variants of Positional Embeddings

* Rotary Positional Embeddings (RoPE): [2104.09864] RoFormer:
Enhanced Transformer with Rotary Position Embedding (arxiv.org)

* AliBi:[2108.12409] Train Short, Test Long: Attention with Linear
Biases Enables Input Length Extrapolation (arxiv.org)

* No embeddings(!?): [2203.16634] Transformer Language Models
without Positional Encodings Still Learn Positional Information
(arxiv.org)
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Self-Attention: Back to Big Picture

 Attention is a way to focus on particular parts of the input

e Can write it in matrix form:

QK"
b = softmax - 4

b4

bt b? b3

% 1
Self-Attention Layer

- f 1

)

x3 xt

* Efficient implementations

xZ

* Better at maintaining long-distance dependencies in the context.
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Self-Attention

b = softmax

QK"

a

‘_'.

hardmaru
@hardmaru

Self-Attention

What is self-attention? Self-attention calculates a weighted
average of feature representations with the weight propor-
tional to a similarity score between pairs of representations.
Formally, an input sequence of n tokens of dimensions d,
X g R™<@ iz projected using three matrices W € | e

Wik € R and Wy € R¥% to extract feature repre-
sentations @), K, and V/, referred to as query, key, and value
respectively with dp = d,. The outputs ), K, V' are com-
puted as

So, self-attention can be written as,

T
S = D(Q,K, V) = softmax (%) ¥, (2)
q
where softmax denotes a row-wise softmax normalization
function. Thus, each element in S depends on all other ele-
ments in the same row.

9:08 PM - Feb 9, 2021 - Twitter Web App

553 Retweets 42 Quote Tweets 3,338 Likes

L
¢

The most important formula in deep learning after 2018




Multi-Headed Self-Attention

* Multiple parallel attention layers is quite common.
* Each attention layer has its own parameters.

g g% g% ,t

Self-Attention Layer
t

[Vaswani et al. 2017] 49




Variants of attention

multi-head

gueries a
i

keys

values
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Grouped-query

ulti-query
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GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints (Ainslie et al., 2023)
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How Do We Make it Deep?

STACK

MORE
LAYERS

* Add a feed-forward network on top it
to add more capacity/expressivity.

* Repeat!
OO0 OO0 OO0
f Feedforward Net: Refresher

Hidden
layer

Input
layer

Feed Forward Network

1

Multi-Headed
Self-Attention Layer

f f f A fully-connected network
OO OO0 OO0 of nodes and weights.

Inputs
Outputs
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Feed forward layer in a transformer

e A position-wise transformation consisting of:

* A linear transformation, non-linear activation . (e.g., ReLU), and another
linear transformation.

FF(c) = f(cW, + b))W, + b,

* This allows the model to apply another transformation to the contextual
representations (or “post-process” them)

« Usually the dimensionality of the hidden feedforward layer is 2-8 times larger
than the input dimension



A transformer block

out
, | \ out = LayerNorm(c' + FF(C’)) (Residual connection)
~dd &'Norm ] FF(C,) - f(C’W1 + bl)WZ + b2
Feed
Forward ¢’ = LayerNorm(c + x)

¢ = MultiHeadAttention(qg, k, v)

Add & Norm
| Multi-Head

q, k, v = QKV_Projection(x)

Attention

) More details of LayerNorm and Residual
~ Connection next week

x: input sequence




Transformer stack

* Astack of N transformer blocks (organized in N layers)

r ] N
~—>| Add & Norm
Feed
Forward
. A
N Add & Norm
Multi-Head
Attention
§ &_1_)

. | _J



Encoder-Decoder Architectures

* Original transformer had two sub-models.

El gato se sento »

Processes the context and
compiles it into a vector.

Encoder

Representation (compression) of the context

i:
e
===

Produces the output sequence item by item
using the representation of the context.

Decoder

55



Encoder-Decoder Architectures

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attentioyy






Tra nSfO FMer vaswanietal 2017]

* An encoder-decoder architecture
built with attention modules.

* 3 forms of attention

"__'I

- -
I
I
1 -

Encoder Self-Attention

-
I
I
l -

Encoder-Decoder Attention

7 N7 = /\/K

MaskedDecoder Self-Attention

Output

Probabilities
[ Softmax )
| Linear |
( ¢ )
[ Add & Norm }=~
Feed
Forward
) “
s N\ | Add & Norm e~
—Add & Norm ] Multi-Head
Feed Attention
Forward | 7 7 7 N x
“ ( J~
Add & Norm
N x I
~—>| Add & Norm ] Mackod
Multi-Head Multi-Head
Attention Attention
e J \__ —
Positional A Positional
cncod D F .
ncoding Encoding
Input Output
Embedding Embedding
Inputs Qutputs 57
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Impact of Transformers

* Let to better predictive models of language ala GPTs!

Model Layers | Heads | Perplexity

LSTMs (Grave et al., 2016) - - 40.8

QRNNs (Merity et al., 2018) - - 33.0
Transformer 16 16 19.8

58

["Efficient Content-Based Sparse Attention with Routing Transformers” Roy et al. 2020]



Impact of Transformers

* A building block for a variety of LMs

Encoders

t 2 2222Y  Decoders

Encoder-

Decoders

Examples: BERT, RoBERTa, SciBERT.

Captures bidirectional context. How do we pretrain them?

Examples: GPT-2, GPT-3, Llama models, and many many more
Other name: causal or auto-regressive language model

Nice to generate from; can’t condition on future words

Examples: Transformer, Tg, BART

What's the best way to pretrain them?
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Transformer LMs + Scale = LLMs

* 2 main dimensions:
* Model size, pretraining data size

1000 o

GPT-3 (1758B)
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Megatron-LM (8.3B)

Model Size (in billions of parameters)
o

BERT-Large (340M)

i Wiki+books ~ Wiki+books+ne c4 Chinchilla
ELMo (94M) (BERT, ws (T5, 2020) (2022)
Con 2018) (RoBERTa 2019)
- 2018 2019 2020 2021 2022 3608
~3B tokens ~30B tokens tokens 1.4T tokens

Photo credit: https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-
megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-
generative-language-model/



http://www.microsoft.com/en-us/research/blog/using-deepspeed-and-

Large Language Models

* Not only they improved performance on many NLP tasks, but
exhibited new capabilities

1000
GPT-3 (175B)
3
2 100 Megatron-Turing NLG (530B)
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Transformers - Summary

Self-attention + positional embedding + others = NLP go brr

Much faster to train than any previous architectures, much
easier to scale

Perform on par or better than previous RNN based models
- Ease of scaling allows to extract much better performance
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