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Logistics
• Homework 1 due date was Wednesday. How did everyone do?

• Any thoughts, questions, concerns?

• Homework 2 is released. Due in two weeks (Feb 5)
• Topic: Language Modeling with Transformers



Recap from last class
• What are language models

• Distributions over sequences of “tokens”.
• Tokens can be: words, character, something else (more about that soon)

• What are they useful for
• Measure likelihood of given sequence, ranking different sequences, generating sequences, 

and more

• How do you measure if a given language model is good
• Perplexity

• How do you train a language model
• N-gram LMs
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This Class and Beyond: Neural Language Models

• Feedforward Neural Language Model

• Recurrent Neural Network (RNN)

• RNN + Attention

• Attention is all you need
○ Transformer Architecture
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The cat sat on the mat
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P(mat |The cat sat on the)
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context  or prefixnext word



P(𝑋𝑋𝑡𝑡| 𝑋𝑋1, …, 𝑋𝑋𝑡𝑡−1)
contextnext word
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P(𝑋𝑋1, … ,𝑋𝑋𝑁𝑁)
= ∏𝑡𝑡 𝑃𝑃(𝑋𝑋t| X1, … ,𝑋𝑋𝑡𝑡−1)

contextnext word

But more broadly, 

P(𝑋𝑋𝑡𝑡| 𝑋𝑋1, …, 𝑋𝑋𝑡𝑡−1)
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Chain rule



P(𝑋𝑋1, … ,𝑋𝑋𝑁𝑁)
contextnext word

But more broadly, 

P(𝑋𝑋𝑡𝑡| 𝑋𝑋1, …, 𝑋𝑋𝑡𝑡−1)
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P(𝑋𝑋1, … ,𝑋𝑋N | 𝑌𝑌1, … ,𝑌𝑌𝑀𝑀)
A variant

additional input

Conditional Language Model



Language Models: N-grams

● Probabilistic n-gram models of text generation 
● LMs so far: count-based estimates of probabilities

● Counts are brittle and generalize poorly, so we added 
smoothing

● The quantity that we are focused on estimating (e.g., for tri-
gram model):
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𝑃𝑃 𝑋𝑋𝑖𝑖 𝑋𝑋𝑖𝑖−2 ,𝑋𝑋𝑖𝑖−1)



Neural Language Models
A Very Simple Approach

• Instead of having count-based distributions, parameterize them
𝑃𝑃 𝑋𝑋𝑖𝑖 𝑋𝑋𝑖𝑖−2 ,𝑋𝑋𝑖𝑖−1,𝜃𝜃)

• How would we model this with a neural network?

• Can we use a feedforward network?



Neural Language Models
A Very Simple Approach

• A simple MLP-ish model
• c = [ϕ(Xi−1); ϕ(Xi−2)] <- concatenate the two vectors
• 𝑙𝑙 = 𝑊𝑊2 tanh 𝑊𝑊1𝒄𝒄 + 𝑏𝑏1 + 𝑏𝑏2 (two layers with tanh activation)

• 𝑃𝑃 𝑋𝑋𝑖𝑖 𝑋𝑋𝑖𝑖−2 ,𝑋𝑋𝑖𝑖−1,𝜃𝜃) = softmax(𝑙𝑙) (number of classes = vocabulary size)

ϕ is an embedding function, and 𝜃𝜃 = 𝑊𝑊1, 𝑏𝑏1,𝑊𝑊2, 𝑏𝑏2,𝜙𝜙

• The parameters are estimated by maximizing the log probability 
of the data

• During inference, you compute the neural network every time
you need a value from the probability distribution

4
[Bengio et al. 2003]



Neural Language Models
A Very Simple Approach

• A simple MLP-ish model
• x = [ϕ(Xi−1); ϕ(Xi−2)]
• 𝑦𝑦 = 𝑊𝑊2 tanh 𝑊𝑊1𝒙𝒙 + 𝑏𝑏1 + 𝑏𝑏2 (two layers with tanh activation)

• 𝑃𝑃 𝑋𝑋𝑖𝑖 𝑋𝑋𝑖𝑖−2 ,𝑋𝑋𝑖𝑖−1,𝜃𝜃) = softmax(𝑦𝑦) (number of classes = vocabulary size)

ϕ is an embedding function, and 𝜃𝜃 = 𝑊𝑊1, 𝑏𝑏1,𝑊𝑊2, 𝑏𝑏2,𝜙𝜙

• What is the advantage over n-gram models?
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[Bengio et al. 2003]

Think smoothing



Neural Language Models
A Very Simple Approach

• A simple MLP-ish model
• x = [ϕ(Xi−1);ϕ(Xi−2)]

• 𝑦𝑦 = 𝑊𝑊2 tanh 𝑊𝑊1𝒙𝒙 + 𝑏𝑏1 + 𝑏𝑏2 (two layers with tanh activation)

• 𝑃𝑃 𝑋𝑋𝑖𝑖 𝑋𝑋𝑖𝑖−2 ,𝑋𝑋𝑖𝑖−1,𝜃𝜃) = softmax(𝑦𝑦) (number of classes = vocabulary size)

ϕ is an embedding function, and 𝜃𝜃 = 𝑊𝑊1,𝑏𝑏1,𝑊𝑊2,𝑏𝑏2,𝜙𝜙

• What is the advantage over n-gram models?
• Think smoothing

• s𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑦𝑦 𝑖𝑖 = exp(𝑦𝑦𝑖𝑖)
∑𝑘𝑘 exp 𝑦𝑦𝑘𝑘

• Why does softmax help with smoothing? 

• What are the costs?
4
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Feedforward Neural Language Models
• The MLP approach can help with smoothing at some costs

• But essentially makes the same modeling choices

- Assuming a finite horizon — the Markov assumption

- We adopted this assumption because of sparsity (i.e., 
smoothing) challenges

• Can neural networks allow us to revisit these assumptions?



Neural Language Models
Revisiting the Markov Assumption
• The Markov assumption was critical for generalization

• But: it’s terrible for natural language!

- “I ate a strawberry with some cream”

- “I ate a strawberry that was picked in the field by the best farmer in the
world with some cream”

• Dependencies can bridge arbitrarily long linear distances (similar to
word2vec)

• It get even worse beyond the single sentence
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Neural Language Models
An MLP with No Markov Assumption
• We need to model the parameterized distribution

• 𝑃𝑃 𝑋𝑋𝑖𝑖 𝑋𝑋1, … 𝑋𝑋𝑖𝑖−2 ,𝑋𝑋𝑖𝑖−1,𝜃𝜃)
• Why not just treat the context as a bag of words Deep Averaging Network

- Then it doesn’t matter how long it is

• Why is this a terrible idea?

- Order matters a lot in language

- But it worked so well for text categorization …

- What may work for tasks that just require focusing on salient words (e.g., topic
categorization), is not sufficient for language models (i.e., next-word prediction)



Neural Language Models
Bag of Words

• BOW can handle arbitrary length

• But losses any notion of order

• Furthermore, dependencies are complex

- Not following linear order

- Importance follow complex patterns

‣ “I ate a strawberry that was picked in the field by the best farmer
in the world with some cream”

‣ “I ate a strawberry that was picked in the field by the best farmer
in the world with clippers”

- The model needs to focus on different parts in the context to
predict different words



LMs w/ Recurrent Neural Nets
• Core idea: apply a model repeatedly

[adopted from Chris Manning]
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Recurrent Neural Networks
• Applied to sequential data iteratively. 

• ℎ𝑡𝑡 = 𝑓𝑓 ℎ𝑡𝑡−1 , 𝑥𝑥𝑡𝑡;𝜃𝜃
• there are many ways to define f (we will only talk about simple RNNs)
• Note this theta is shared across all the items in the sequence

• Why RNNs
• They allow modeling infinite context (in theory)
• They can retain sequential information as opposed to bag of words models

• Intuitively, at every hidden state, the model encodes all the necessary 
information required to predict the next token at that position

• At least that’s the hope



Recall: Conditional Language Models
• Useful for modeling tasks like machine translation, document 

summarization etc.

P(𝑋𝑋1, … ,𝑋𝑋N | 𝑌𝑌1, … ,𝑌𝑌𝑀𝑀)



Conditional LMs with RNNs
Two RNNs – encoder and decoder
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How to train RNNs?
• Using our favorite algorithm: gradient descent using cross-entropy 

loss at every output step

• But backpropagation is applied over and over to the same parameters
theta 

• Also known as backpropagation through time (BPTT)

• Issues with RNNs
• Gradients can explode or vanish.
• Solution: modify optimization algorithms / architectures (e.g. LSTMs) [won’t 

discuss in this course, look at readings)



Other issues with RNNs
• Recurrent computation is slow, difficult to

parallelize.

• Each hidden state is expected to store the
entire information from the previous
context

• Is it even possible?

[adopted from Chris Manning]
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Machine Translation with RNNs
Read the source only once, generate translation from memory
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Solution: Attention
• What if the decoder at each step pays “attention” to a 

distribution of all of encoder’s hidden states?

• Intuition: when we (humans) translate a sentence, we don’t just 
consume the original sentence then regurgitate in a new 
language; we continuously look back at the original while 
focusing on different parts

26
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RNNs with Attention
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RNNs with Attention
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RNNs with Attention

29

• Attention allowed modelling longer context and obtain higher 
performance

• But 
• It is still slow because of linear computation in RNN
• It still has gradient vanishing/exploding issues

• Solution: what if we removed the RNN component and only use 
attention

• Attention is all you need (Vaswani et al 2017)



Transformers

• Replace the linear part with self-attention

• Introduce residual connections to improve gradient flow (avoid 
gradient exploding / vanishing issues)

• Introduce positional embeddings to encode sequential order
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Self-Attention 

𝑥𝑥4𝑥𝑥3𝑥𝑥2𝑥𝑥1

𝑏𝑏4𝑏𝑏3𝑏𝑏2𝑏𝑏1

𝑥𝑥4𝑥𝑥3𝑥𝑥2𝑥𝑥1

𝑏𝑏4𝑏𝑏3𝑏𝑏2𝑏𝑏1

Self-Attention Layer

• 𝑏𝑏𝑡𝑡 is obtained based on the whole 
input sequence. 

• can be parallelly computed. 

Idea: replace any thing done by RNN with self-attention. 

RNN

[adopted from Hung-yi Lee]“Neural machine translation by jointly learning to align and translate” Bahdanau etl. 2014; 
“Attention is All You Need” Vaswani et al. 2017
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Attention 
• Core idea: on each step, use direct connection to focus (“attend”) 

on a particular part of the context
• Kind of similar to deep averaging networks but a “weighted average”

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762] 32

https://arxiv.org/abs/1706.03762


Defining Self-Attention
• Terminology: 

• Query: to match others
• Key: to be matched  
• Value: information to be extracted

• Definition: Given a set of vector values, and a vector query, 
attention is a technique to compute a weighted sum of the value, 
dependent on the query. 

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762] 33
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𝑣𝑣1
O
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𝑘𝑘1
O
O

𝑞𝑞1

𝑥𝑥1
The

𝑞𝑞: query (to match others)

𝑘𝑘: key (to be matched)

𝑣𝑣: value (information to be extracted)

𝑞𝑞𝑡𝑡 = 𝑊𝑊𝑞𝑞𝑥𝑥𝑡𝑡

𝑘𝑘𝑡𝑡 = 𝑊𝑊𝑘𝑘𝑥𝑥𝑡𝑡

𝑣𝑣𝑡𝑡 = 𝑊𝑊𝑣𝑣𝑥𝑥𝑡𝑡

O O O O O
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O
O

𝑣𝑣1
O
O

𝑘𝑘1
O
O

𝑞𝑞1

𝑥𝑥1
O O O O O

The cat sat           on

O
O

𝑣𝑣2
O
O

𝑘𝑘2
O
O

𝑞𝑞2

𝑥𝑥2
O O O O O

O
O

𝑣𝑣3
O
O

𝑘𝑘3
O
O

𝑞𝑞3

𝑥𝑥3
O O O O O

O
O

𝑣𝑣4
O
O

𝑘𝑘4
O
O

𝑞𝑞4

𝑥𝑥4
O O O O O

35

𝑞𝑞: query (to match others)

𝑘𝑘: key (to be matched)

𝑣𝑣: value (information to be extracted)

𝑞𝑞𝑡𝑡 = 𝑊𝑊𝑞𝑞𝑥𝑥𝑡𝑡

𝑘𝑘𝑡𝑡 = 𝑊𝑊𝑘𝑘𝑥𝑥𝑡𝑡

𝑣𝑣𝑡𝑡 = 𝑊𝑊𝑣𝑣𝑥𝑥𝑡𝑡
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The cat sat           on
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𝑞𝑞: query (to match others)
𝑘𝑘: key (to be matched)

𝑣𝑣: value (information to be extracted)

𝛼𝛼1,1 𝛼𝛼1,2 𝛼𝛼1,3 𝛼𝛼1,4

How much 
should “The” 
attend to other 
positions? 

𝛼𝛼1,𝑡𝑡 = �𝑞𝑞1 � 𝑘𝑘𝑡𝑡
𝛼𝛼

Scaled dot product
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𝑘𝑘4
O
O

𝑞𝑞4

𝑥𝑥4
O O O O O

𝛼𝛼1,1 𝛼𝛼1,2 𝛼𝛼1,3 𝛼𝛼1,4

How much 
should “The” 
attend to other 
positions? 

Softmax

�𝛼𝛼1,1 �𝛼𝛼1,2 �𝛼𝛼1,3 �𝛼𝛼1,4

𝜎𝜎 𝑧𝑧 𝑡𝑡 =
𝑒𝑒𝑒𝑒𝑒𝑒 𝑧𝑧𝑡𝑡

∑𝑗𝑗 𝑒𝑒𝑒𝑒𝑒𝑒 𝑧𝑧𝑗𝑗
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O
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𝑥𝑥4
O O O O O

𝛼𝛼1,1 𝛼𝛼1,2 𝛼𝛼1,3 𝛼𝛼1,4

Representation of “The” given the  attention weights 

Softmax

�𝛼𝛼1,1 �𝛼𝛼1,2 �𝛼𝛼1,3 �𝛼𝛼1,4

O O 𝑏𝑏1 = �
𝑖𝑖

�𝛼𝛼1,𝑡𝑡𝑣𝑣𝑡𝑡
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𝑣𝑣4
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O
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𝑞𝑞4

𝑥𝑥4
O O O O O

𝛼𝛼1,1 𝛼𝛼1,2 𝛼𝛼1,3 𝛼𝛼1,4

One issue: the model doesn’t know 
word positions/ordering.  

Softmax

�𝛼𝛼1,1 �𝛼𝛼1,2 �𝛼𝛼1,3 �𝛼𝛼1,4

O O 𝑏𝑏1 = �
𝑖𝑖

�𝛼𝛼1,𝑡𝑡𝑣𝑣𝑡𝑡
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How to encode position information?
• Self attention doesn’t have a way to know whether an input 

token comes before or after another
• Position is important in sequence modeling in NLP

• A way to introduce position information is add individual 
position encodings to the input for each position in the 
sequence

𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡 + 𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡
Where 𝑝𝑝𝑝𝑝st is a position vector
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𝛼𝛼1,1 𝛼𝛼1,2 𝛼𝛼1,3 𝛼𝛼1,4

One issue: the model doesn’t know 
word positions/ordering.  

Softmax

�𝛼𝛼1,1 �𝛼𝛼1,2 �𝛼𝛼1,3 �𝛼𝛼1,4

O O 𝑏𝑏1 = �
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�𝛼𝛼1,𝑡𝑡𝑣𝑣𝑡𝑡

O O O O O
𝑝𝑝1
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𝑝𝑝2

O O O O O
𝑝𝑝3

O O O O O
𝑝𝑝4

𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖 are unique vectors 
representing positional 
information
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Properties of a good positional embedding
• It should output a unique encoding for each time-step (word’s position in a 

sentence)
• Distance between any two time-steps should be consistent across sentences 

with different lengths.
• The cat sat on the mat
• The happy cat sat on the mat

• Our model should generalize to longer sentences without any efforts. Its 
values should be bounded.

• It must be deterministic.
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Absolute position embeddings
• Define a maximum context length you model can encode: say 1000 

tokens. 
• Create a separate embedding table for each position.
• Each index 1, 2, 3, … gets a enbedding.
• Learn the embeddings with the model.

• Issues with Learned positions embeddings:
• Maximum length that can be presented is limited (what if I get a 2000 token input)
• Difficult to encode relative positions

• The cat sat on the mat
• The happy cat sat on the mat



Functional (and fixed) position embeddings
Sinusoidal embeddings

The frequencies are decreasing along the vector dimension. It forms a geometric on the wavelengths.



Sinusoidal Embeddings: Intuition

45Transformer Architecture: The Positional Encoding - Amirhossein Kazemnejad's Blog

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/


Variants of Positional Embeddings
• Rotary Positional Embeddings (RoPE): [2104.09864] RoFormer: 

Enhanced Transformer with Rotary Position Embedding (arxiv.org)

• AliBi: [2108.12409] Train Short, Test Long: Attention with Linear 
Biases Enables Input Length Extrapolation (arxiv.org)

• No embeddings(!?): [2203.16634] Transformer Language Models 
without Positional Encodings Still Learn Positional Information 
(arxiv.org)

46
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Self-Attention: Back to Big Picture  
• Attention is a way to focus on particular parts of the input
• Can write it in matrix form: 

• Efficient implementations
• Better at maintaining long-distance dependencies in the context. 

𝑥𝑥4𝑥𝑥3𝑥𝑥2𝑥𝑥1

𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4

Self-Attention Layer𝒃𝒃 = softmax
𝑄𝑄𝐾𝐾T

𝛼𝛼
𝑉𝑉
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Self-Attention

𝒃𝒃 = softmax
𝑄𝑄𝐾𝐾T

𝛼𝛼
𝑉𝑉
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Multi-Headed Self-Attention
• Multiple parallel attention layers is quite common. 

• Each attention layer has its own parameters. 

Self-Attention LayerSelf-Attention Layer

𝑥𝑥4𝑥𝑥3𝑥𝑥2𝑥𝑥1

[Vaswani et al. 2017] 49



Variants of attention

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints (Ainslie et al., 2023)

multi-head                   Grouped-query                multi-query

queries

keys

values



How Do We Make it Deep? 

Multi-Headed 
Self-Attention Layer

O O O O O O

Feed Forward Network

O O O O O O

• Add a feed-forward network on top it 
to add more capacity/expressivity. 

• Repeat! 

Feedforward Net: Refresher

A fully-connected network 
of nodes and weights. 
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Feed forward layer in a transformer
• A position-wise transformation consisting of:

• A linear transformation, non-linear activation 𝑓𝑓 (e.g., ReLU), and another 
linear transformation.

𝐹𝐹𝐹𝐹 𝑐𝑐 = 𝑓𝑓 𝑐𝑐𝑊𝑊1 + 𝑏𝑏1 𝑊𝑊2 + 𝑏𝑏2
• This allows the model to apply another transformation to the contextual 

representations (or “post-process” them)

• Usually the dimensionality of the hidden feedforward layer is 2-8 times larger 
than the input dimension



A transformer block

𝐹𝐹𝐹𝐹 𝑐𝑐′ = 𝑓𝑓 𝑐𝑐′𝑊𝑊1 + 𝑏𝑏1 𝑊𝑊2 + 𝑏𝑏2

out = L𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐′ + FF 𝑐𝑐′ (Residual connection)

𝑞𝑞,𝑘𝑘, 𝑣𝑣 = QKV_Projection(𝑥𝑥)

𝑐𝑐 = MultiHeadAttention(q, k, v)

𝑥𝑥:  input sequence

𝑐𝑐′ = 𝐿𝐿𝐿𝐿𝑦𝑦𝑦𝑦𝑦𝑦𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜(𝑐𝑐 + 𝑥𝑥)

out

More details of LayerNorm and Residual 
Connection next week



Transformer stack
• A stack of N transformer blocks (organized in N layers)



Encoder-Decoder Architectures 
• Original transformer had two sub-models.

El gato se sento

En
co

de
r

De
co

de
r

Representation (compression) of the context

Produces the output sequence item by item 
using the representation of the context. 

Processes the context and 
compiles it into a vector.
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Encoder-Decoder Architectures 

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/56






Transformer [Vaswani et al. 2017]

• An encoder-decoder architecture 
built with attention modules. 

• 3 forms of attention
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Impact of Transformers 
• Let to better predictive models of language ala GPTs! 

[”Efficient Content-Based Sparse Attention with Routing Transformers” Roy et al. 2020] 58



Impact of Transformers 
• A building block for a variety of LMs 

Decoders

Encoders

Encoder-
Decoders

 Examples: GPT-2, GPT-3, Llama models, and many many more

 Other name: causal or auto-regressive language model 

 Nice to generate from; can’t condition on future words

 Examples: BERT, RoBERTa, SciBERT.

 Captures bidirectional context. How do we pretrain them?

 Examples: Transformer, T5, BART

 What’s the best way to pretrain them? 
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Transformer LMs + Scale = LLMs

• 2 main dimensions:
• Model size, pretraining data size
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Model size over time
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Wiki+books 
(BERT, 
2018)

~3B tokens

Wiki+books+ne 
ws

(RoBERTa 2019)

~30B tokens

C4 
(T5, 2020)

360B
tokens

Chinchilla 
(2022)

1.4T tokens
Photo credit: https://www.microsoft.com/en-us/research/blog/using-deepspeed-and- 
megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful- 
generative-language-model/

http://www.microsoft.com/en-us/research/blog/using-deepspeed-and-


Large Language Models

• Not only they improved performance on many NLP tasks, but 
exhibited new capabilities



Transformers - Summary

• Self-attention + positional embedding + others = NLP go brr

• Much faster to train than any previous architectures, much 
easier to scale

• Perform on par or better than previous RNN based models
○ Ease of scaling allows to extract much better performance
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