
Language Modeling II
CSE 5525: Foundations of Speech and Language Processing

Sachin Kumar (kumar.1145@osu.edu)

https://shocheen.github.io/cse-5525-spring-2025/

Slide Credits: Chris Tanner

Logistics
• Homework 1 due date was Wednesday. How did everyone do?

• Any thoughts, questions, concerns?

• Homework 2 is released. Due in two weeks (Feb 5)
• Topic: Language Modeling with Transformers

Recap from last class
• What are language models

• Distributions over sequences of “tokens”.
• Tokens can be: words, character, something else (more about that soon)

• What are they useful for
• Measure likelihood of given sequence, ranking different sequences, generating sequences,

and more

• How do you measure if a given language model is good
• Perplexity

• How do you train a language model
• N-gram LMs

3

This Class and Beyond: Neural Language Models

• Feedforward Neural Language Model

• Recurrent Neural Network (RNN)

• RNN + Attention

• Attention is all you need
○ Transformer Architecture

4

The cat sat on the mat

5

P(mat |The cat sat on the)

6

context or prefixnext word

P(𝑋𝑋𝑡𝑡| 𝑋𝑋1, …, 𝑋𝑋𝑡𝑡−1)
contextnext word

7

P(𝑋𝑋1, … ,𝑋𝑋𝑁𝑁)
= ∏𝑡𝑡 𝑃𝑃(𝑋𝑋t| X1, … ,𝑋𝑋𝑡𝑡−1)

contextnext word

But more broadly,

P(𝑋𝑋𝑡𝑡| 𝑋𝑋1, …, 𝑋𝑋𝑡𝑡−1)

8

Chain rule

P(𝑋𝑋1, … ,𝑋𝑋𝑁𝑁)
contextnext word

But more broadly,

P(𝑋𝑋𝑡𝑡| 𝑋𝑋1, …, 𝑋𝑋𝑡𝑡−1)

9

P(𝑋𝑋1, … ,𝑋𝑋N | 𝑌𝑌1, … ,𝑌𝑌𝑀𝑀)
A variant

additional input

Conditional Language Model

Language Models: N-grams

● Probabilistic n-gram models of text generation
● LMs so far: count-based estimates of probabilities

● Counts are brittle and generalize poorly, so we added
smoothing

● The quantity that we are focused on estimating (e.g., for tri-
gram model):

10

�
𝑖𝑖

𝑃𝑃 𝑋𝑋𝑖𝑖 𝑋𝑋𝑖𝑖−2 ,𝑋𝑋𝑖𝑖−1)

Neural Language Models
A Very Simple Approach

• Instead of having count-based distributions, parameterize them
𝑃𝑃 𝑋𝑋𝑖𝑖 𝑋𝑋𝑖𝑖−2 ,𝑋𝑋𝑖𝑖−1,𝜃𝜃)

• How would we model this with a neural network?

• Can we use a feedforward network?

Neural Language Models
A Very Simple Approach

• A simple MLP-ish model
• c = [ϕ(Xi−1); ϕ(Xi−2)] <- concatenate the two vectors
• 𝑙𝑙 = 𝑊𝑊2 tanh 𝑊𝑊1𝒄𝒄 + 𝑏𝑏1 + 𝑏𝑏2 (two layers with tanh activation)

• 𝑃𝑃 𝑋𝑋𝑖𝑖 𝑋𝑋𝑖𝑖−2 ,𝑋𝑋𝑖𝑖−1,𝜃𝜃) = softmax(𝑙𝑙) (number of classes = vocabulary size)

ϕ is an embedding function, and 𝜃𝜃 = 𝑊𝑊1, 𝑏𝑏1,𝑊𝑊2, 𝑏𝑏2,𝜙𝜙

• The parameters are estimated by maximizing the log probability
of the data

• During inference, you compute the neural network every time
you need a value from the probability distribution

4
[Bengio et al. 2003]

Neural Language Models
A Very Simple Approach

• A simple MLP-ish model
• x = [ϕ(Xi−1); ϕ(Xi−2)]
• 𝑦𝑦 = 𝑊𝑊2 tanh 𝑊𝑊1𝒙𝒙 + 𝑏𝑏1 + 𝑏𝑏2 (two layers with tanh activation)

• 𝑃𝑃 𝑋𝑋𝑖𝑖 𝑋𝑋𝑖𝑖−2 ,𝑋𝑋𝑖𝑖−1,𝜃𝜃) = softmax(𝑦𝑦) (number of classes = vocabulary size)

ϕ is an embedding function, and 𝜃𝜃 = 𝑊𝑊1, 𝑏𝑏1,𝑊𝑊2, 𝑏𝑏2,𝜙𝜙

• What is the advantage over n-gram models?

4

[Bengio et al. 2003]

Think smoothing

Neural Language Models
A Very Simple Approach

• A simple MLP-ish model
• x = [ϕ(Xi−1);ϕ(Xi−2)]

• 𝑦𝑦 = 𝑊𝑊2 tanh 𝑊𝑊1𝒙𝒙 + 𝑏𝑏1 + 𝑏𝑏2 (two layers with tanh activation)

• 𝑃𝑃 𝑋𝑋𝑖𝑖 𝑋𝑋𝑖𝑖−2 ,𝑋𝑋𝑖𝑖−1,𝜃𝜃) = softmax(𝑦𝑦) (number of classes = vocabulary size)

ϕ is an embedding function, and 𝜃𝜃 = 𝑊𝑊1,𝑏𝑏1,𝑊𝑊2,𝑏𝑏2,𝜙𝜙

• What is the advantage over n-gram models?
• Think smoothing

• s𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑦𝑦 𝑖𝑖 = exp(𝑦𝑦𝑖𝑖)
∑𝑘𝑘 exp 𝑦𝑦𝑘𝑘

• Why does softmax help with smoothing?

• What are the costs?
4

[Bengio et al. 2003]

Feedforward Neural Language Models
• The MLP approach can help with smoothing at some costs

• But essentially makes the same modeling choices

- Assuming a finite horizon — the Markov assumption

- We adopted this assumption because of sparsity (i.e.,
smoothing) challenges

• Can neural networks allow us to revisit these assumptions?

Neural Language Models
Revisiting the Markov Assumption
• The Markov assumption was critical for generalization

• But: it’s terrible for natural language!

- “I ate a strawberry with some cream”

- “I ate a strawberry that was picked in the field by the best farmer in the
world with some cream”

• Dependencies can bridge arbitrarily long linear distances (similar to
word2vec)

• It get even worse beyond the single sentence

16

Neural Language Models
An MLP with No Markov Assumption
• We need to model the parameterized distribution

• 𝑃𝑃 𝑋𝑋𝑖𝑖 𝑋𝑋1, … 𝑋𝑋𝑖𝑖−2 ,𝑋𝑋𝑖𝑖−1,𝜃𝜃)
• Why not just treat the context as a bag of words Deep Averaging Network

- Then it doesn’t matter how long it is

• Why is this a terrible idea?

- Order matters a lot in language

- But it worked so well for text categorization …

- What may work for tasks that just require focusing on salient words (e.g., topic
categorization), is not sufficient for language models (i.e., next-word prediction)

Neural Language Models
Bag of Words

• BOW can handle arbitrary length

• But losses any notion of order

• Furthermore, dependencies are complex

- Not following linear order

- Importance follow complex patterns

‣ “I ate a strawberry that was picked in the field by the best farmer
in the world with some cream”

‣ “I ate a strawberry that was picked in the field by the best farmer
in the world with clippers”

- The model needs to focus on different parts in the context to
predict different words

LMs w/ Recurrent Neural Nets
• Core idea: apply a model repeatedly

[adopted from Chris Manning]

is the initial hidden state

words / one-hot vectors

word embeddings

the

sat on

book
s laptop

s

a zo
o

output distribution

hidden
states

Input

embedding

outputs

cat
19

Recurrent Neural Networks
• Applied to sequential data iteratively.

• ℎ𝑡𝑡 = 𝑓𝑓 ℎ𝑡𝑡−1 , 𝑥𝑥𝑡𝑡;𝜃𝜃
• there are many ways to define f (we will only talk about simple RNNs)
• Note this theta is shared across all the items in the sequence

• Why RNNs
• They allow modeling infinite context (in theory)
• They can retain sequential information as opposed to bag of words models

• Intuitively, at every hidden state, the model encodes all the necessary
information required to predict the next token at that position

• At least that’s the hope

Recall: Conditional Language Models
• Useful for modeling tasks like machine translation, document

summarization etc.

P(𝑋𝑋1, … ,𝑋𝑋N | 𝑌𝑌1, … ,𝑌𝑌𝑀𝑀)

Conditional LMs with RNNs
Two RNNs – encoder and decoder

22the

sat on

book
s laptop

s

a zo
o

output distribution

cat
22

22
el

se sentógato

Decoder

Encoder

How to train RNNs?
• Using our favorite algorithm: gradient descent using cross-entropy

loss at every output step

• But backpropagation is applied over and over to the same parameters
theta

• Also known as backpropagation through time (BPTT)

• Issues with RNNs
• Gradients can explode or vanish.
• Solution: modify optimization algorithms / architectures (e.g. LSTMs) [won’t

discuss in this course, look at readings)

Other issues with RNNs
• Recurrent computation is slow, difficult to

parallelize.

• Each hidden state is expected to store the
entire information from the previous
context

• Is it even possible?

[adopted from Chris Manning]

the students opened their

books
lapto
ps

a zo
o

24

Machine Translation with RNNs
Read the source only once, generate translation from memory

25the

sat on

book
s laptop

s

a zo
o

output distribution

cat
25

25
el

se sentógato

Decoder

Encoder

Solution: Attention
• What if the decoder at each step pays “attention” to a

distribution of all of encoder’s hidden states?

• Intuition: when we (humans) translate a sentence, we don’t just
consume the original sentence then regurgitate in a new
language; we continuously look back at the original while
focusing on different parts

26

[adopted from Chris Tanner]

RNNs with Attention

27the

cat
27

27
el

se sentógato

𝛼𝛼2𝛼𝛼1 𝛼𝛼4

Query vector
Key vectors (also the value vectors)

Context vector

RNNs with Attention

28the

cat
28

28
el

se sentógato

[ℎ 2 , 𝑐𝑐(2)]

sat
lounged

a zo
o

RNNs with Attention

29

• Attention allowed modelling longer context and obtain higher
performance

• But
• It is still slow because of linear computation in RNN
• It still has gradient vanishing/exploding issues

• Solution: what if we removed the RNN component and only use
attention

• Attention is all you need (Vaswani et al 2017)

Transformers

• Replace the linear part with self-attention

• Introduce residual connections to improve gradient flow (avoid
gradient exploding / vanishing issues)

• Introduce positional embeddings to encode sequential order

30

Self-Attention

𝑥𝑥4𝑥𝑥3𝑥𝑥2𝑥𝑥1

𝑏𝑏4𝑏𝑏3𝑏𝑏2𝑏𝑏1

𝑥𝑥4𝑥𝑥3𝑥𝑥2𝑥𝑥1

𝑏𝑏4𝑏𝑏3𝑏𝑏2𝑏𝑏1

Self-Attention Layer

• 𝑏𝑏𝑡𝑡 is obtained based on the whole
input sequence.

• can be parallelly computed.

Idea: replace any thing done by RNN with self-attention.

RNN

[adopted from Hung-yi Lee]“Neural machine translation by jointly learning to align and translate” Bahdanau etl. 2014;
“Attention is All You Need” Vaswani et al. 2017

31

Attention
• Core idea: on each step, use direct connection to focus (“attend”)

on a particular part of the context
• Kind of similar to deep averaging networks but a “weighted average”

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762] 32

https://arxiv.org/abs/1706.03762

Defining Self-Attention
• Terminology:

• Query: to match others
• Key: to be matched
• Value: information to be extracted

• Definition: Given a set of vector values, and a vector query,
attention is a technique to compute a weighted sum of the value,
dependent on the query.

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762] 33

https://arxiv.org/abs/1706.03762

O
O

𝑣𝑣1
O
O

𝑘𝑘1
O
O

𝑞𝑞1

𝑥𝑥1
The

𝑞𝑞: query (to match others)

𝑘𝑘: key (to be matched)

𝑣𝑣: value (information to be extracted)

𝑞𝑞𝑡𝑡 = 𝑊𝑊𝑞𝑞𝑥𝑥𝑡𝑡

𝑘𝑘𝑡𝑡 = 𝑊𝑊𝑘𝑘𝑥𝑥𝑡𝑡

𝑣𝑣𝑡𝑡 = 𝑊𝑊𝑣𝑣𝑥𝑥𝑡𝑡

O O O O O

34

O
O

𝑣𝑣1
O
O

𝑘𝑘1
O
O

𝑞𝑞1

𝑥𝑥1
O O O O O

The cat sat on

O
O

𝑣𝑣2
O
O

𝑘𝑘2
O
O

𝑞𝑞2

𝑥𝑥2
O O O O O

O
O

𝑣𝑣3
O
O

𝑘𝑘3
O
O

𝑞𝑞3

𝑥𝑥3
O O O O O

O
O

𝑣𝑣4
O
O

𝑘𝑘4
O
O

𝑞𝑞4

𝑥𝑥4
O O O O O

35

𝑞𝑞: query (to match others)

𝑘𝑘: key (to be matched)

𝑣𝑣: value (information to be extracted)

𝑞𝑞𝑡𝑡 = 𝑊𝑊𝑞𝑞𝑥𝑥𝑡𝑡

𝑘𝑘𝑡𝑡 = 𝑊𝑊𝑘𝑘𝑥𝑥𝑡𝑡

𝑣𝑣𝑡𝑡 = 𝑊𝑊𝑣𝑣𝑥𝑥𝑡𝑡

O
O

𝑣𝑣1
O
O

𝑘𝑘1
O
O

𝑞𝑞1

𝑥𝑥1
O O O O O

The cat sat on

O
O

𝑣𝑣2
O
O

𝑘𝑘2
O
O

𝑞𝑞2

𝑥𝑥2
O O O O O

O
O

𝑣𝑣3
O
O

𝑘𝑘3
O
O

𝑞𝑞3

𝑥𝑥3
O O O O O

O
O

𝑣𝑣4
O
O

𝑘𝑘4
O
O

𝑞𝑞4

𝑥𝑥4
O O O O O

𝑞𝑞: query (to match others)
𝑘𝑘: key (to be matched)

𝑣𝑣: value (information to be extracted)

𝛼𝛼1,1 𝛼𝛼1,2 𝛼𝛼1,3 𝛼𝛼1,4

How much
should “The”
attend to other
positions?

𝛼𝛼1,𝑡𝑡 = �𝑞𝑞1 � 𝑘𝑘𝑡𝑡
𝛼𝛼

Scaled dot product

36

O
O

𝑣𝑣1
O
O

𝑘𝑘1
O
O

𝑞𝑞1

𝑥𝑥1
O O O O O

The cat sat on

O
O

𝑣𝑣2
O
O

𝑘𝑘2
O
O

𝑞𝑞2

𝑥𝑥2
O O O O O

O
O

𝑣𝑣3
O
O

𝑘𝑘3
O
O

𝑞𝑞3

𝑥𝑥3
O O O O O

O
O

𝑣𝑣4
O
O

𝑘𝑘4
O
O

𝑞𝑞4

𝑥𝑥4
O O O O O

𝛼𝛼1,1 𝛼𝛼1,2 𝛼𝛼1,3 𝛼𝛼1,4

How much
should “The”
attend to other
positions?

Softmax

�𝛼𝛼1,1 �𝛼𝛼1,2 �𝛼𝛼1,3 �𝛼𝛼1,4

𝜎𝜎 𝑧𝑧 𝑡𝑡 =
𝑒𝑒𝑒𝑒𝑒𝑒 𝑧𝑧𝑡𝑡

∑𝑗𝑗 𝑒𝑒𝑒𝑒𝑒𝑒 𝑧𝑧𝑗𝑗

37

O
O

𝑣𝑣1
O
O

𝑘𝑘1
O
O

𝑞𝑞1

𝑥𝑥1
O O O O O

The cat sat on

O
O

𝑣𝑣2
O
O

𝑘𝑘2
O
O

𝑞𝑞2

𝑥𝑥2
O O O O O

O
O

𝑣𝑣3
O
O

𝑘𝑘3
O
O

𝑞𝑞3

𝑥𝑥3
O O O O O

O
O

𝑣𝑣4
O
O

𝑘𝑘4
O
O

𝑞𝑞4

𝑥𝑥4
O O O O O

𝛼𝛼1,1 𝛼𝛼1,2 𝛼𝛼1,3 𝛼𝛼1,4

Representation of “The” given the attention weights

Softmax

�𝛼𝛼1,1 �𝛼𝛼1,2 �𝛼𝛼1,3 �𝛼𝛼1,4

O O 𝑏𝑏1 = �
𝑖𝑖

�𝛼𝛼1,𝑡𝑡𝑣𝑣𝑡𝑡

38

O
O

𝑣𝑣1
O
O

𝑘𝑘1
O
O

𝑞𝑞1

𝑥𝑥1
O O O O O

The cat sat on

O
O

𝑣𝑣2
O
O

𝑘𝑘2
O
O

𝑞𝑞2

𝑥𝑥2
O O O O O

O
O

𝑣𝑣3
O
O

𝑘𝑘3
O
O

𝑞𝑞3

𝑥𝑥3
O O O O O

O
O

𝑣𝑣4
O
O

𝑘𝑘4
O
O

𝑞𝑞4

𝑥𝑥4
O O O O O

𝛼𝛼1,1 𝛼𝛼1,2 𝛼𝛼1,3 𝛼𝛼1,4

One issue: the model doesn’t know
word positions/ordering.

Softmax

�𝛼𝛼1,1 �𝛼𝛼1,2 �𝛼𝛼1,3 �𝛼𝛼1,4

O O 𝑏𝑏1 = �
𝑖𝑖

�𝛼𝛼1,𝑡𝑡𝑣𝑣𝑡𝑡

39

How to encode position information?
• Self attention doesn’t have a way to know whether an input

token comes before or after another
• Position is important in sequence modeling in NLP

• A way to introduce position information is add individual
position encodings to the input for each position in the
sequence

𝑥𝑥𝑡𝑡 = 𝑥𝑥𝑡𝑡 + 𝑝𝑝𝑝𝑝𝑠𝑠𝑡𝑡
Where 𝑝𝑝𝑝𝑝st is a position vector

O
O

𝑣𝑣1
O
O

𝑘𝑘1
O
O

𝑞𝑞1

𝑥𝑥1
O O O O O

O
O

𝑣𝑣2
O
O

𝑘𝑘2
O
O

𝑞𝑞2

𝑥𝑥2
O O O O O

O
O

𝑣𝑣3
O
O

𝑘𝑘3
O
O

𝑞𝑞3

𝑥𝑥3
O O O O O

O
O

𝑣𝑣4
O
O

𝑘𝑘4
O
O

𝑞𝑞4

𝑥𝑥4
O O O O O

𝛼𝛼1,1 𝛼𝛼1,2 𝛼𝛼1,3 𝛼𝛼1,4

One issue: the model doesn’t know
word positions/ordering.

Softmax

�𝛼𝛼1,1 �𝛼𝛼1,2 �𝛼𝛼1,3 �𝛼𝛼1,4

O O 𝑏𝑏1 = �
𝑖𝑖

�𝛼𝛼1,𝑡𝑡𝑣𝑣𝑡𝑡

O O O O O
𝑝𝑝1

O O O O O
𝑝𝑝2

O O O O O
𝑝𝑝3

O O O O O
𝑝𝑝4

𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖 are unique vectors
representing positional
information

41

Properties of a good positional embedding
• It should output a unique encoding for each time-step (word’s position in a

sentence)
• Distance between any two time-steps should be consistent across sentences

with different lengths.
• The cat sat on the mat
• The happy cat sat on the mat

• Our model should generalize to longer sentences without any efforts. Its
values should be bounded.

• It must be deterministic.

42

Absolute position embeddings
• Define a maximum context length you model can encode: say 1000

tokens.
• Create a separate embedding table for each position.
• Each index 1, 2, 3, … gets a enbedding.
• Learn the embeddings with the model.

• Issues with Learned positions embeddings:
• Maximum length that can be presented is limited (what if I get a 2000 token input)
• Difficult to encode relative positions

• The cat sat on the mat
• The happy cat sat on the mat

Functional (and fixed) position embeddings
Sinusoidal embeddings

The frequencies are decreasing along the vector dimension. It forms a geometric on the wavelengths.

Sinusoidal Embeddings: Intuition

45Transformer Architecture: The Positional Encoding - Amirhossein Kazemnejad's Blog

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Variants of Positional Embeddings
• Rotary Positional Embeddings (RoPE): [2104.09864] RoFormer:

Enhanced Transformer with Rotary Position Embedding (arxiv.org)

• AliBi: [2108.12409] Train Short, Test Long: Attention with Linear
Biases Enables Input Length Extrapolation (arxiv.org)

• No embeddings(!?): [2203.16634] Transformer Language Models
without Positional Encodings Still Learn Positional Information
(arxiv.org)

46

https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2203.16634
https://arxiv.org/abs/2203.16634
https://arxiv.org/abs/2203.16634

Self-Attention: Back to Big Picture
• Attention is a way to focus on particular parts of the input
• Can write it in matrix form:

• Efficient implementations
• Better at maintaining long-distance dependencies in the context.

𝑥𝑥4𝑥𝑥3𝑥𝑥2𝑥𝑥1

𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4

Self-Attention Layer𝒃𝒃 = softmax
𝑄𝑄𝐾𝐾T

𝛼𝛼
𝑉𝑉

47

Self-Attention

𝒃𝒃 = softmax
𝑄𝑄𝐾𝐾T

𝛼𝛼
𝑉𝑉

48

Multi-Headed Self-Attention
• Multiple parallel attention layers is quite common.

• Each attention layer has its own parameters.

Self-Attention LayerSelf-Attention Layer

𝑥𝑥4𝑥𝑥3𝑥𝑥2𝑥𝑥1

[Vaswani et al. 2017] 49

Variants of attention

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints (Ainslie et al., 2023)

multi-head Grouped-query multi-query

queries

keys

values

How Do We Make it Deep?

Multi-Headed
Self-Attention Layer

O O O O O O

Feed Forward Network

O O O O O O

• Add a feed-forward network on top it
to add more capacity/expressivity.

• Repeat!

Feedforward Net: Refresher

A fully-connected network
of nodes and weights.

51

Feed forward layer in a transformer
• A position-wise transformation consisting of:

• A linear transformation, non-linear activation 𝑓𝑓 (e.g., ReLU), and another
linear transformation.

𝐹𝐹𝐹𝐹 𝑐𝑐 = 𝑓𝑓 𝑐𝑐𝑊𝑊1 + 𝑏𝑏1 𝑊𝑊2 + 𝑏𝑏2
• This allows the model to apply another transformation to the contextual

representations (or “post-process” them)

• Usually the dimensionality of the hidden feedforward layer is 2-8 times larger
than the input dimension

A transformer block

𝐹𝐹𝐹𝐹 𝑐𝑐′ = 𝑓𝑓 𝑐𝑐′𝑊𝑊1 + 𝑏𝑏1 𝑊𝑊2 + 𝑏𝑏2

out = L𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐′ + FF 𝑐𝑐′ (Residual connection)

𝑞𝑞,𝑘𝑘, 𝑣𝑣 = QKV_Projection(𝑥𝑥)

𝑐𝑐 = MultiHeadAttention(q, k, v)

𝑥𝑥: input sequence

𝑐𝑐′ = 𝐿𝐿𝐿𝐿𝑦𝑦𝑦𝑦𝑦𝑦𝑁𝑁𝑜𝑜𝑜𝑜𝑜𝑜(𝑐𝑐 + 𝑥𝑥)

out

More details of LayerNorm and Residual
Connection next week

Transformer stack
• A stack of N transformer blocks (organized in N layers)

Encoder-Decoder Architectures
• Original transformer had two sub-models.

El gato se sento

En
co

de
r

De
co

de
r

Representation (compression) of the context

Produces the output sequence item by item
using the representation of the context.

Processes the context and
compiles it into a vector.

55

Encoder-Decoder Architectures

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/56

Transformer [Vaswani et al. 2017]

• An encoder-decoder architecture
built with attention modules.

• 3 forms of attention

57

Impact of Transformers
• Let to better predictive models of language ala GPTs!

[”Efficient Content-Based Sparse Attention with Routing Transformers” Roy et al. 2020] 58

Impact of Transformers
• A building block for a variety of LMs

Decoders

Encoders

Encoder-
Decoders

 Examples: GPT-2, GPT-3, Llama models, and many many more

 Other name: causal or auto-regressive language model

 Nice to generate from; can’t condition on future words

 Examples: BERT, RoBERTa, SciBERT.

 Captures bidirectional context. How do we pretrain them?

 Examples: Transformer, T5, BART

 What’s the best way to pretrain them?

59

Transformer LMs + Scale = LLMs

• 2 main dimensions:
• Model size, pretraining data size

1000

800

600

400

200

0
Sep-17

N
um

 P
ar

am
et

er
s (

Bi
llio

n)

Model size over time

1400

1200

Apr-18 Oct-18 May-19 Dec-19 Jun-20 Jan-21 Jul-21

Wiki+books
(BERT,
2018)

~3B tokens

Wiki+books+ne
ws

(RoBERTa 2019)

~30B tokens

C4
(T5, 2020)

360B
tokens

Chinchilla
(2022)

1.4T tokens
Photo credit: https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-
megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-
generative-language-model/

http://www.microsoft.com/en-us/research/blog/using-deepspeed-and-

Large Language Models

• Not only they improved performance on many NLP tasks, but
exhibited new capabilities

Transformers - Summary

• Self-attention + positional embedding + others = NLP go brr

• Much faster to train than any previous architectures, much
easier to scale

• Perform on par or better than previous RNN based models
○ Ease of scaling allows to extract much better performance

62

	Language Modeling II
	Logistics
	Recap from last class
	This Class and Beyond: Neural Language Models
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Language Models: N-grams
	Neural Language Models
A Very Simple Approach
	Neural Language Models
A Very Simple Approach
	Neural Language Models
A Very Simple Approach
	Neural Language Models
A Very Simple Approach
	Feedforward Neural Language Models
	Neural Language Models
Revisiting the Markov Assumption
	Neural Language Models
An MLP with No Markov Assumption
	Neural Language Models
Bag of Words
	LMs w/ Recurrent Neural Nets
	Recurrent Neural Networks
	Recall: Conditional Language Models
	Conditional LMs with RNNs�Two RNNs – encoder and decoder
	How to train RNNs?
	Other issues with RNNs
	Machine Translation with RNNs�Read the source only once, generate translation from memory
	Solution: Attention
	RNNs with Attention
	RNNs with Attention
	RNNs with Attention
	Transformers
	Self-Attention
	Attention
	Defining Self-Attention
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	How to encode position information?
	Slide Number 41
	Properties of a good positional embedding
	Absolute position embeddings
	Functional (and fixed) position embeddings�Sinusoidal embeddings
	Sinusoidal Embeddings: Intuition
	Variants of Positional Embeddings
	Self-Attention: Back to Big Picture
	Self-Attention
	Multi-Headed Self-Attention
	Variants of attention
	How Do We Make it Deep?
	Feed forward layer in a transformer
	A transformer block
	Transformer stack
	Encoder-Decoder Architectures
	Encoder-Decoder Architectures
	Transformer [Vaswani et al. 2017]
	Impact of Transformers
	Impact of Transformers
	Transformer LMs + Scale = LLMs
	Large Language Models
	Transformers - Summary

