Language Modeling Il
Transformers

CSE 5525: Foundations of Speech and Language Processing
https://shocheen.github.io/cse-5525-spring-2025/

THE OHIO STATE UNIVERSITY

Sachin Kumar (kumar.1145@osu.edu)

Slide Credits: Chris Tanner

Logistics

* Homework 2 is due date in exactly one week.
* Any thoughts, questions, concerns?

* Final project: have you formed teams already?
* A project proposal will be due second/third week of February.
* We will post sample project ideas on the website/teams later this week

Recap

Feedforward Neural Language Model | |
o Need to make unreasonable assumptions and lose information from the long
context

Recurrent Neural Network (RNN)

o Infinitely long context in theor?/ --- hard to train (exploding/vanishin[g gradients),
difficult to parallelize, and could be infeasible (memorize a variable [ength
sequence in a fixed length vector).

o Encoder-decoder architecture

RNN + Attention
o Solvesthe last issue, still hard to train efficiently (on GPUs).

Attention is all you need [will continue today]
o Transformer Architecture

Transformers

Replace the linear part of RNNs with self-attention

Introduce residual connections + layernorm to improve
gradient flow (avoid gradient vanishing issues)

Introduce positional embeddings to encode sequential order

Outline

s Self-Attention
=== |ransformer Encoder
mmsms [ransformer Decoder

m=m= |Language Modeling With Transformers

Outline

e Self-Attention
=== |ransformer Encoder
mmsms [ransformer Decoder

Defining Self-Attention

* Terminology:
* Query: to match others
* Key: to be matched
» Value: information to be extracted

 Definition: Given a set of vector values, and a vector query,
attention is a technique to compute a weighted sum of the value,
dependent on the query.

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762]

https://arxiv.org/abs/1706.03762

Self-Attention

Under the hood, each x has 3

Step 1: Our Self-Attention Head | has just 3 weight matrices small, associated vectors. For
W, W,, W, in total. These same 3 weight matrices are example, x, has:
multiplied by each x; to create all vectors: . Queryq,
qi o wq Xi hd Key kl
k. = w, x. * Valuev,
V.= W, X
Ol |o||®||l® [O]||e]|e||le |O]|e|e|le |[O]|®|®|e®
Ol |e]|®||®] |O] |e|e|l® [O]|e||l®|® |[O]||®|®|®
8!.. 8300 8300 8300
a k v Q@ k Vv a3 ks Vv A ki v,
e & LJ - e
The brown dog ran

X
=
Py
N
pd
w
X
N

Self-Attention

Step 2: For word x,, let’s calculate the scores s,, s,, S5, 5,, Which represent how much
attention to pay to each respective “word” v,

S;= 0k, =92

=
=

q;

The brown

Self-Attention

Step 2: For word x,, let’s calculate the scores s,, s,, S5, s,, Which represent how much
attention to pay to each respective “word” v,

s,=0,k,=124

S;= 0k, =92

=
N

q;

brown

Self-Attention

Step 2: For word x,, let’s calculate the scores s,, s,, S5, 5,, Which represent how much
attention to pay to each respective “word” v,

S3= 0, ky =22
s,=0,k,=124
S;= 0k, =92
®
<
L
q; ks

brown dog

Self-Attention

Step 2: For word x,, let’s calculate the scores s,, s,, S5, s,, Which represent how much
attention to pay to each respective “word” v,

;= 'k, =8

S3= 0, ky =22

s,=0,k,=124

S;= 0k, =92
®
o
@

q; ky

brown ran

Self-Attention

Step 3: Our scores sy, S,, s, 5, don’t sum to 1. Let’s divide by Vien(k;) and softmax it

S4=q2°k4=8 a4=0-(S4/8)=O
S, =0, ky=22 a; =o0(s3/8)=.01
s,=0,°k,=124 a,=o0(s,/8)=.91
s, =0, k,=92 a; =0(s,/8)=.08

EIRIRIC

O o||®

O L 110

O @ k v

©

brown

Self-Attention

Step 3: Our scores s,, S, s, 5, don’t sum to 1. Let’s divide by Vien(k;) and softmax it

Sq= 0k, =8 a,=0(s4/8)=0 Instead of these a, values directly weighting
5,= q,ky = 22 a, = o(s3/8) = .01 our original x; word vectors, they directly
weight our v; vectors.

s,=0,k,=124 a,=0o(s,/8)=.91
s, =0,k =92 a; =0(s,/8)=.08

@) o||®

O o||l®

@, L]0

O Q k Vv

O

brown

X
N

Self-Attention

Step 4: Let’s weight our v, vectors and simply sum them up!

z,=ay'vyta,v, +as v, +a,yv,

=0.08-v; + 0.91-v, + 0.01:v; + 0-v,

~3

Self-Attention

Tada! Now we have great, new representations z, via a self-attention head

y 4 1 Z y) Z 3 y 4 a
® @ o ®
® @ o o
® @ o ©
00 RS ~ ST MU
0] [e](®][®] (O] [e](e](e] [O][e][e](®] [o][e](®][®] :
o |e|le|l®| [O]|e|le|le] [O]|e|le|le| |O]||le|e|le® :
olle)lelle] [O]le/le)le [O]lellelel |Ole)elle :
O qa kv O A, k, v O d; k3 v3 O Ay ky Vv, E
© © © © i

_|
Kl o
o)
o
< O
N

S
-
o
wxog
—
x Q
&3

Takeaway:

Self-Attention is powerful; allows us to create
great, context-aware representations

Self-Attention

b = softmax

QK"

a

‘_'.

hardmaru
@hardmaru

Self-Attention

What is self-attention? Self-attention calculates a weighted
average of feature representations with the weight propor-
tional to a similarity score between pairs of representations.
Formally, an input sequence of n tokens of dimensions d,
X g R™<@ iz projected using three matrices W € | e

Wik € R and Wy € R¥% to extract feature repre-
sentations @), K, and V/, referred to as query, key, and value
respectively with dp = d,. The outputs), K, V' are com-
puted as

So, self-attention can be written as,

T
S = D(Q,K, V) = softmax (%) ¥, (2)
q
where softmax denotes a row-wise softmax normalization
function. Thus, each element in S depends on all other ele-
ments in the same row.

9:08 PM - Feb 9, 2021 - Twitter Web App

553 Retweets 42 Quote Tweets 3,338 Likes

The most important formula in deep learning after 2018

Outline

e Self-Attention

=== |ransformer Encoder

msmmm [ransformer Decoder

Outline

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

20

Self-Attention

Let’s further pass each z. through a
FeedForward NN

Self-Attention + FFNN

M1 r r3 My
S
')
y.{
t.j
Z,
o
o
o
:‘llll ll
: o
: ‘e
. ')
S ¢

Let’s further pass each z. through a Feed
Forward NN

Self-Attention + FFNN + Residual Connections

Let’s further pass each z. through a

FFNN

We add a residual connection to help
ensure relevant info is getting forward
passed.

v=ZzZ+Xx

Self-Attention + FFNN + Residual Connections

"1 r M3 My

@) e O O

% a t:j t:j Let’s further pass each z. through a

0 S o o FFNN
..... | SO, SO NN N
T We add residual connection to help
CnnnnnnnnnnnnnnnnIn Ly ensure relevant info is getting forward

 pased.
NN N NSNS NN EEEE NSNS NSNS NSNS NN NSNS NSNS NSNS NS NN EEEEEEEEEEEEEEEER ’. v — Z + x
O O
Z, : Z, oz,

We perform LayerNorm to stabilize the

®
T network and allow for proper gradient
.. Self-attent|on Head fIOW. You should do this Clﬂ'el’ the FFNN,
O O .
68 [JEae ELE R
o) o) .
O o :

brown dog ran
X3 X,

Stabilizing Gradient Flow: Residual Connection
and Layernorm

* Residual connection: y = f(x) + x

* f might be a complex function and gives small gradients wrt x, adding x
back to f(x) gives higher values of the gradient

* Layer Normalization (LayerNorm):
* Another way to prevent vanishing gradients

E|z]

/ \/Var:aj] + € K

arxiv.org/pdf/2409.12951

https://arxiv.org/pdf/2409.12951

Self-Attention + FFN

ry

Let’s further pass each z. through a

FFNN

We concat w/ a residual connection to
help ensure relevant info is getting
forward passed.

We perform LayerNorm to stabilize the
network and allow for proper gradient
flow. You should do this after the FFNN,

too.

Each z, can be computed in parallel,
unlike RNNs!

Transformer Encoder

Q.
o

x

Yay! Our r, vectors are our new
representations, and this entire
process is called a Transformer
Encoder

Transformer Encoder

Q.
o

x

Yay! Our r, vectors are our new
representations, and this entire
process is called a Transformer
Encoder

Problem: there is no concept of
positionality. Words are weighted

as if a “bag of words”

Transformer Encoder

Q.
o

x

Yay! Our r, vectors are our new
representations, and this entire
process is called a Transformer
Encoder

Problem: there is no concept of
positionality. Words are weighted
as if a “bag of words”

Solution: add to each input word
X; a positional encoding

Input to the model is now
X; + posS;

How to encode position information?

* Self attention doesn’t have a way to know whether an input token comes
before or after another

* Position is important in sequence modeling in NLP

* A way to introduce position information is add individual position
encodings to the input for each position in the sequence

X; = X; + POS;

Where pos; is a position vector

Properties of a good positional embedding

[t should output a unique encoding for each time-step (word’s position in a
sentence)

Distance between any two time-steps should be consistent across sentences
with different lengths.

« The cat sat on the mat
- The happy cat sat on the mat

Our model should generalize to longer sentences without any etfforts. Its
values should be bounded.

It must be deterministic.

31

Absolute position embeddings

* Define a maximum context length you model can encode: say 1000
tokens.

* Create a separate embedding table for each position.
* Eachindexz, 2, 3, ... gets an embedding.
* Learnthe embeddings with the model.

* Issues with Learned positions embeddings:
* Maximum length that can be presented is limited (what if | get a 2000 token input)

* Difficult to encode relative positions
* The cat sat on the mat
* The happy cat sat on the mat

Functional (and fixed) position embeddings

Sinusoidal embeddings

sin(ws. t)
cos(wy. t)
(4) : i - if 1 = 2k .
pi = F(#)®) = sin(wj- 1), 1fz sin(ws. t)
cos(wg.t), ifi=2k+1

o cos(ws. t)

bt =

where
o 1

" 10000%/1 sin(wgyz- t)
| cos(wg/2- 1)

The frequencies are decreasing along the vector dimension. It forms a geometric progression on the
wavelengths.

Sinusoidal Embeddings: Intuition

0: 00O 8 : 000
1: 001 9 : 001
2 010 10 : 010
3 : 011 11 : 011
4 : 100 12 : 100
D : 101 13 : 101
0 : 110 14 : 110
7 111 15 : 111

Transformer Architecture: The Positional Encoding - Amirhossein Kazemnejad's Blog

34

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

100

1
-0.7S

050

25

000

Token Position

—0.25

—0.50

—0.75

o 10 20 30 40 50 B0
. . Lo Embedding Dimension
https://jalammar.github.io/illustrated-transformer/

Variants of Positional Embeddings

* Rotary Positional Embeddings (RoPE): [2104.09864] RoFormer:
Enhanced Transformer with Rotary Position Embedding (arxiv.org)

* AliBi:[2108.12409] Train Short, Test Long: Attention with Linear
Biases Enables Input Length Extrapolation (arxiv.org)

* No embeddings(!?): [2203.16634] Transformer Language Models
without Positional Encodings Still Learn Positional Information
(arxiv.org)

36

https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2203.16634
https://arxiv.org/abs/2203.16634
https://arxiv.org/abs/2203.16634

A Self-Attention Head has just one set of query/key/value

weight matrices w_ w, w,

q

Words can relate in many ways, so it’s restrictive to rely on
just one Self-Attention Head in the system.

Let’s create Multi-headed Self-Attention

Multi-head Attention

Each Self-Attention Head

r)

produces a z. vector using
qguery, key, and value

vectors

We can, in parallel, use
multiple heads and concat
the z.’s. For each input
create multiple query, key,

and value vectors

-
N

To recap: all of this looks

1 3 4
®) ©
T < FE N < N . o
: Q Q : fancy, but ultimately it’s just
. O .

: T T producing a very good
d .‘IIII IIIIIIIIIIIIIIIIIIIIIIII F ll IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII .E E contextuqlized embedding
:.': ri of each word Xi
- + x Residual Connections +LayerNorm :
Z1a 218 Zc Zya Zog Zyc Z3p 23 Zyc Zyn 24 Zyc

T ---------------- T T Self-attention Head
] JEE HEEE :

Sl encoder

(] A
~—>| Add &1 Norm
Feed
Forward
A
b
~> Add & Norm
Multi-Head
Attention
At 2
o y
Fositional @_()
: =+
Encoding 1
Input
Embedding

T

INnputs

Variants of multi-head attention attention

multi-head Grouped-query ulti-query

eries - [JULHUUOUD OUODUDCL HIH (I

o 000000 0000 1

values

Transfarmer Fncoder

To recap: all of this looks
fancy, but ultimately it’s just
producing a very good
contextualized embedding
r.of each word X

Transfarmer Fncoder

To recap: all of this looks
fancy, but ultimately it’s just

producing a very good
contextualized embedding
r.of each word X

Why stop with just 1

r r r
1 P 3 C;‘ Transformer Encoder? We
O O O
could stack several!
e o) Q Q
S O O O

To recap: all of this looks

i ry I3 g
o g 5 fancy, but ultimately it’s just
E producing a very good
< contextualized embedding
geneenss I TT T : r of each word X;
Why stop with just 1
R I IT T Transformer Encoder? We

: |
Encoder #2 could stack several!

F" 1 N
~>| Add 8; Norm |
g "2 3 4 Feed
o S . Forward
O S 3 @
S S S 3 { {

— Tl b : Nx Add&!NDrm)

: \ Multi-Head I
Attention
N | N N | e

: : \)

Positional
S S S S A

‘ Input

Embedding
T T dIg raI INputs
X3

The original Transformer model was intended for
Machine Translation, so it had Decoders, too

Outline

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

THE OHIO STATE UNIVERSITY

47

Outline

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

48

Encoder-Decoder Architectures

* Original transformer had two sub-models.

El gato se sento »

Processes the context and
compiles it into a vector.

Encoder

Representation (compression) of the context

i:
e
===

Produces the output sequence item by item
using the representation of the context.

Decoder

49

Encoder-Decoder Architectures

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attentiagyy

Transformer Decoder

ry

)O000

(@

X
=

Xm
No

perro marron

I

|
Add & Norm

Feed
Forward

|

Add & Norm

Multi-Head
Attention

-

J
Add & Norm
Masked

Multi-Head
Attention

—

\. J

G-

Qutput
Embedding

I

Qutputs
(shifted right)

Positional
Encoding

Transformer Encoders and Decoders

Transformer T I T

e, IMMSSRSMEEE i produce contextualized
: embeddings of each word

Transformer Encoders

Transformer Decoders
generate new sequences of

text

Decoder #1

Transformer Encoders and Decoders

Transformer

E-llllllll EEEEEEEEEEEENSN EEEEEEEEEEEEN IIIIIIIIE E Trqnsformer DeCOderS qre
: Decoder #8 I .
3 : i identical to the Encoders,

except they have an
additional Attention Head in
between the Self-Attention
and FFNN layers.

: This additional Attention
L TP PP PP PP PP TP PPPTTTYPPTPPPTPPPPRPPCIY Head focuses on parts of

Decoder #1 the encoder’s

representations.

Transformer Encoders and Decoders

Transformer

E-llllllll EEEEEEEEEEEEN EEEEEEEEEEEERN IIIIIIIIE E T f
: Decoder #8 ¥ The query vector OI”CI
. : Transformer Decoder’s

Attention Head (not Self-
Attention Head) is from the
output of the previous
decoder layer.

: However, the key and value
T TP PP P PP P PP TP TTTTPRTPTTTIPITITTTTIr I vectors are from the

Decoder #1

Transformer Encoders’
outputs.

Transformer Encoders and Decoders

Transformer

Decoder #8 The query, key, and value

vectors for a Transformer
Decoder’s Self-Attention
Head (not Attention Head)
are all from the output of the
previous decoder layer.

Transformer Encoders and Decoders

IMPORTANT

Transformer

E-llllllll EEEEEEEEEEEEN EEEEEEEEEEEER IIIIIIIIE E The Trqnsformer DeCOderS
: Decoder #8 D . :
C : i have positional embeddings,

too, just like the Encoders.

Critically, each position is
only allowed to attend to the
previous indices. This masked
Attention preserves it as
being an auto-regressive LM.

Tra nSfO FMer vaswanietal 2017]

* An encoder-decoder architecture
built with attention modules.

* 3 forms of attention

"__'I

- -
I
I
1 -

Encoder Self-Attention

-
I
I
l -

Encoder-Decoder Attention

7 N7 = /\/K

MaskedDecoder Self-Attention

Output

Probabilities
[Softmax)
| Linear |
(¢)
[Add & Norm }=~
Feed
Forward
) “
s N\ | Add & Norm e~
—Add & Norm] Multi-Head
Feed Attention
Forward | 7 7 7 N x
“ (J~
Add & Norm
N x I
~—>| Add & Norm] Mackod
Multi-Head Multi-Head
Attention Attention
e J __ —
Positional A Positional
cncod D F .
ncoding Encoding
Input Output
Embedding Embedding
Inputs Qutputs 57

(shifted right)

Decoding time 5tep:®2 3456

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

OUTPUT

?

~\
Linear + Softmax)
'1 T 3
ENCODER DECODER
J J
))
"! N
ENCODER DECODER
J J_)

crrry ety el

(rrrij [rrl COErrd

Je

SUIis

étudiant

https://jalammar.github.io/illustrated-transformer/

Decoding time step: 1@3 4 5 6

EMBEDDING
WITH TIME
SIGNAL

EMBEDDINGS

INPUT

OUTPUT
~
(111 1T BEEE Kencdec Vencdec (Linear + Softmax)
1 i T)
ENCODERS DECODERS
1 1 1
LT LT] [TTT] [T 1]
HEEE HEER CLLT] [(T1L]
Je suis étudiant PREVIOUS
OUTPUTS

https://jalammar.github.io/illustrated-transformer/

Output
Probabilities

t

| Softmax |

3

| Linear |}

r ™\
| Add & Norm |
Feed
Forward
Y
/ I 2 | Add & Norm Je=
[t Mutti-Head
Feed Attention
Forward) J) J) RS
| | Je~
Add & Norm
M T
—{Add & Norm J Masked
Multi-Head Multi-Head
Attention Attention
At At
— J \. —
Positional Positional
Encodi D & '
ncoding 3 Encoding
Inpiut Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Attention is All you Need (2017) https://arxiv.org/pdf/1706.03762.pdf

Loss Function: cross-entropy (predicting translated word)

Training Time: ~4 days on (8) GPUs

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n® - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logi(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

n = sequence length

d = length of representation (vector)

Q: Is the complexity of self-attention good?

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n® - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logi(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

Important: when learning dependencies b/w words, you don’t want long
paths. Shorter is better.

Self-attention connects all positions with a constant # of sequentially
executed operations, whereas RNNs require 0 (n).

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n® - d) O(1) O(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logi(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

https://arxiv.org/pdf/1706.03762.pdf

Machine Translation results: state-of-the-art (at the time)

BLEU Training Cost (FLOPs)
Model EN-DE EN-FR EN-DE EN-FR
ByteNet [18] 23.75
Deep-Att + PosUnk [39] 39.2 1.0 - 10%°
GNMT + RL [38] 24.6 39.92 2.3-1019 1.4.10%0
ConvS2S [9] 25.16 40.46 9.6-10® 1.5.102%°
MoE [32] 26.03 40.56 2.0-10"* 1.2.
Deep-Att + PosUnk Ensemble [39] 40.4 8.0 -
GNMT + RL Ensemble [38] 2630 41.16 1.8-10%° 1.1.
ConvS2S Ensemble [9] 26.36 41.29 7.7-101% 1.2
Transformer (base model) 273 38.1 3.3.10'8
Transformer (big) 28.4 41.8 2.3-101°

Impact of Transformers

* Let to better predictive models of language ala GPTs!

Model Layers | Heads | Perplexity

LSTMs (Grave et al., 2016) - - 40.8

QRNNs (Merity et al., 2018) - - 33.0
Transformer 16 16 19.8

65

["Efficient Content-Based Sparse Attention with Routing Transformers” Roy et al. 2020]

Impact of Transformers

* A building block for a variety of LMs

Encoders

t 2 2222Y Decoders

Encoder-

Decoders

Examples: BERT, RoBERTa, SciBERT.

Captures bidirectional context. How do we pretrain them?

Examples: GPT-2, GPT-3, Llama models, and many many more
Other name: causal or auto-regressive language model

Nice to generate from; can’t condition on future words

Examples: Transformer, Tg, BART

What's the best way to pretrain them?

66

Transformer LMs + Scale = LLMs

* 2 main dimensions:
* Model size, pretraining data size

1000 o

GPT-3 (1758B)

,_.
5]
o
2
o
nm
o
el
2
o
o
A
c
5,
5
@
=
|
(1]
w
w
]
®
=

Megatron-LM (8.3B)

Model Size (in billions of parameters)
o

BERT-Large (340M)

i Wiki+books ~ Wiki+books+ne c4 Chinchilla
ELMo (94M) (BERT, ws (T5, 2020) (2022)
Con 2018) (RoBERTa 2019)
- 2018 2019 2020 2021 2022 3608
~3B tokens ~30B tokens tokens 1.4T tokens

Photo credit: https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-
megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-
generative-language-model/

http://www.microsoft.com/en-us/research/blog/using-deepspeed-and-

Large Language Models

* Not only they improved performance on many NLP tasks, but
exhibited new capabilities

1000
GPT-3 (175B)
3
2 100 Megatron-Turing NLG (530B)
(¥
£
s
8 Megatron-LM (8.3B)
s Turing-NLG (17.2B)
[
v 10
=
2 TS (11B)
E
£
3 1 GPT-2 (1.5B)
v
@
3
e e BERT-Large (340M)
0.1 >
ELMo (94M)
0.01

2018 2019 2020 2021 2022

Transformers - Summary

Self-attention + positional embedding + others = NLP go brr

Much faster to train than any previous architectures, much
easier to scale

Perform on par or better than previous RNN based models
- Ease of scaling allows to extract much better performance

 What if we don’t want to decode/translate?

* Just want to perform a particular task (e.g., classification)

 Want even more robust, flexible, rich representation!

 Want positionality to play a more explicit role, while not being

restricted to a particular form (e.g., CNNs)

Outline

s Self-Attention

=== |ransformer Encoder

msmmm [ransformer Decoder

Outline

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

72

BERT

Bidirectional Encoder Representations from Transformers

73

BERT

Bidirectional Encoder Representations from Transformers

Like Bidirectional LSTMs, let’s look in both directions

74

BERT

Bidirectional Encoder Representations from Transformers

Let’s only use Transformer Encoders, no Decoders

75

BER
P

Bidirectional Encoder Representations from Transformers

It’s a language model that builds rich representations

76

BERT

brown 0.92
lazy 0.05 BERT has 2 training objectives:

playful 0.03

1. Predict the Masked word (a la CBOW)
15% of all input words are randomly masked.
e 80% become [MASK]

* 10% become revert back

* 10% become are deliberately corrupted as
wrong words

BERT

brown 0.92
lazy 0.05 BERT has 2 training objectives:

playful 0.03

2. Two sentences are fed in at a time.
Predict the if the second sentence of input
truly follows the first one or not.

@P Mask LM
alie

Mask LM

L 5

~

0 A ™ B

BERT

| EElEET =

L <
(s ([| [aen [e |[e (st |

*
Unlabeled Sentence A and B Pair

Masked Sentence A Masked Sentence B

Pre-training

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf

Every two sentences are separated by o
<SEP> token.

50% of the time, the 2"¥ sentence is a
randomly selected sentence from the
corpus.

50% of the time, it truly follows the first
sentence in the corpus.

79

BERT

NSP Mask LM Mask LM \
A e &

) =)

BERT
Emg I| E; Eyv || Beem || Ei' | - | B
e p——
oS Tk i . Toaki B (== Tosk 1 Tokrd

| |
I

Maszked Sentence A

Masked Sentence B

*
Unlabeled Sentence A and B Pair

Pre-training

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf

NOTE: BERT also embeds the inputs by

their WordPiece embeddings.

WordPiece is a sub-word tokenization

learns to merge and use characters based
on which pairs maximize the likelihood of

the training data if added to the vocab.

80

BERT

Picture: https://jalammar.github.io/illustrated-bert/

|

| t 1

One could extract the contextualized embeddings

Generate Contexualized Embeddings

#______——_-ﬁ

—
- —

L, (C

ENCODER
|
oo | oo
| ?I!I'.i['I!]I' 1!11
| 2 (ENCODER J
[1] [(T.I1
| ‘_!|'_'I|||'| :!1[
. (ENCODER J
1 1 |
|
1| 2 3 4 512‘
I [CLS) e
BERT

The output of each encoder layer along
each token's path can be used as a
feature representing that token.

But which one should we use?

81

BERT Later layers have the best contextualized embeddings

Dev F1 Score

EEEE First Layer [T 11 91.0
M Last Hidden Layer O 94.9
I [0 1S
RN Sum All 12 (TTT] ik
Layers Zx A ’
I —
p= s ==y
EEETT
Second-to-Last
TT1T Hidden Layer o st | 95.6
—
_____ . G [V T
..... um Last Four 4
Hidden — 959
TR
Concat Last T [[96.1

Four Hidden
Picture: https://jalammar.github.io/illustrated-bert/

BERT

— BERT yields state-of-the-art (SOTA) results on many tasks
System MNLI-(m/mm) QOQP QNLI S5T-2 CoLA STS-B MREPC RTE Average
392k 363k 108k 67k 8.5k 3.7k 3.5k 2.5k -

Pre-OpenAl SOTA 80.6/80.1 66.1 852.3 93.2 35.0 51.0 86.0 61.7 74.0
BILSTM+ELMo+Attn T6.4/76.1 64.8 T9.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTgrasE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 858.9 66.4 T9.6
BERTLarGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 59.3 70.1 52.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).

83
Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf

‘\/\/\/\/\

Takeaway

BERT is incredible for learning contextualized
embeddings of words and using transfer
learning for other tasks (e.g., classification).

Can’t generate new sentences though, due to
no decoders.

	Language Modeling III: Transformers
	Logistics
	Recap
	Transformers
	Outline
	Outline
	Defining Self-Attention
	Self-Attention
	Self-Attention
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Self-Attention
	Self-Attention
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Stabilizing Gradient Flow: Residual Connection and Layernorm
	Self-Attention + FFNN
	Transformer Encoder
	Transformer Encoder
	Transformer Encoder
	How to encode position information?
	Properties of a good positional embedding
	Absolute position embeddings
	Functional (and fixed) position embeddings�Sinusoidal embeddings
	Sinusoidal Embeddings: Intuition
	Position Encodings
	Variants of Positional Embeddings
	Slide Number 37
	Multi-head Attention
	Transformer Encoder
	Transformer Encoder
	Variants of multi-head attention attention
	Transformer Encoder
	Transformer Encoder
	Transformer Encoder
	Transformer Encoder
	Slide Number 46
	Slide Number 47
	Outline
	Encoder-Decoder Architectures
	Encoder-Decoder Architectures
	Transformer Decoder
	Transformer Encoders and Decoders
	Transformer Encoders and Decoders
	Transformer Encoders and Decoders
	Transformer Encoders and Decoders
	Transformer Encoders and Decoders
	Transformer [Vaswani et al. 2017]
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Impact of Transformers
	Impact of Transformers
	Transformer LMs + Scale = LLMs
	Large Language Models
	Transformers - Summary
	Slide Number 70
	Slide Number 71
	Slide Number 72
	BERT
	BERT
	BERT
	BERT
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	BERT (a Transformer variant)

