
Language Modeling III:
Transformers

CSE 5525: Foundations of Speech and Language Processing

Sachin Kumar (kumar.1145@osu.edu)

https://shocheen.github.io/cse-5525-spring-2025/

Slide Credits: Chris Tanner

Logistics
• Homework 2 is due date in exactly one week.

• Any thoughts, questions, concerns?

• Final project: have you formed teams already?
• A project proposal will be due second/third week of February.
• We will post sample project ideas on the website/teams later this week

Recap
• Feedforward Neural Language Model

○ Need to make unreasonable assumptions and lose information from the long
context

• Recurrent Neural Network (RNN)
○ Infinitely long context in theory --- hard to train (exploding/vanishing gradients),

difficult to parallelize, and could be infeasible (memorize a variable length
sequence in a fixed length vector).

○ Encoder-decoder architecture

• RNN + Attention
○ Solves the last issue, still hard to train efficiently (on GPUs).

• Attention is all you need [will continue today]
○ Transformer Architecture

3

Transformers

• Replace the linear part of RNNs with self-attention

• Introduce residual connections + layernorm to improve
gradient flow (avoid gradient vanishing issues)

• Introduce positional embeddings to encode sequential order

4

Self-Attention

Transformer Encoder

Transformer Decoder

Language Modeling With Transformers

Outline

5

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

Outline

6

Defining Self-Attention
• Terminology:

• Query: to match others
• Key: to be matched
• Value: information to be extracted

• Definition: Given a set of vector values, and a vector query,
attention is a technique to compute a weighted sum of the value,
dependent on the query.

[Vaswani et al. 2017: https://arxiv.org/abs/1706.03762] 7

https://arxiv.org/abs/1706.03762

Self-Attention

The brown dog ran
x1 x2 x3 x4

Under the hood, each xi has 3
small, associated vectors. For
example, x1 has:

• Query q1

• Key k1

• Value v1

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 1: Our Self-Attention Head l has just 3 weight matrices
Wq, Wk, Wv in total. These same 3 weight matrices are
multiplied by each xi to create all vectors:

qi = wq xi

ki = wk xi

vi = wv xi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how much
attention to pay to each respective ”word” vi

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q2⋅k2 = 124

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how much
attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how much
attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

s1 = q2⋅k1 = 92

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

s4 = q2⋅k4 = 8

Step 2: For word x2, let’s calculate the scores s1, s2, s3, s4, which represent how much
attention to pay to each respective ”word” vi

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑙𝑙𝑙𝑙𝑙(𝑘𝑘𝑖𝑖) and softmax it

a1 = 𝝈𝝈(𝒔𝒔𝟏𝟏/𝟖𝟖) = .08

a2 = 𝝈𝝈(𝒔𝒔𝟐𝟐/𝟖𝟖) = .91

a3 = 𝝈𝝈(𝒔𝒔𝟑𝟑/𝟖𝟖) = .01

a4 = 𝝈𝝈(𝒔𝒔𝟒𝟒/𝟖𝟖) = 0

s1 = q2⋅k1 = 92

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

s4 = q2⋅k4 = 8

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Step 3: Our scores s1, s2, s3, s4 don’t sum to 1. Let’s divide by √𝑙𝑙𝑙𝑙𝑙𝑙(𝑘𝑘𝑖𝑖) and softmax it

a1 = 𝝈𝝈(𝒔𝒔𝟏𝟏/𝟖𝟖) = .08

a2 = 𝝈𝝈(𝒔𝒔𝟐𝟐/𝟖𝟖) = .91

a3 = 𝝈𝝈(𝒔𝒔𝟑𝟑/𝟖𝟖) = .01

a4 = 𝝈𝝈(𝒔𝒔𝟒𝟒/𝟖𝟖) = 0 Instead of these ai values directly weighting
our original xi word vectors, they directly
weight our vi vectors.

s1 = q2⋅k1 = 92

s2 = q2⋅k2 = 124

s3 = q2⋅k3 = 22

s4 = q2⋅k4 = 8

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

z2 = a1⋅v1 + a2⋅v2 + a3⋅v3 + a4⋅v4

Step 4: Let’s weight our vi vectors and simply sum them up!

= 0.08⋅v1 + 0.91⋅v2 + 0.01⋅v3 + 0⋅v4

z2

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Tada! Now we have great, new representations zi via a self-attention head

z4z3z2z1

Self-attention Head

Self-Attention

Self-Attention

The brown dog ran
x1 x2 x3 x4

q2 k2 v2q1 k1 v1 q3 k3 v3 q4 k4 v4

Tada! Now we have great, new representations zi via a self-attention head

z4z3z2z1
Takeaway:

Self-Attention is powerful; allows us to create
great, context-aware representations

Self-Attention

𝒃𝒃 = softmax
𝑄𝑄𝐾𝐾T

𝛼𝛼
𝑉𝑉

18

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

Outline

19

Outline

20

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Let’s further pass each zi through a
FeedForward NN

Self-Attention

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

r2 r3

FFNN

r4r1 Let’s further pass each zi through a Feed
Forward NN

Self-Attention + FFNN

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

r2 r3

FFNN

r4r1

Let’s further pass each zi through a
FFNN

We add a residual connection to help
ensure relevant info is getting forward
passed.

𝑣𝑣 = 𝑧𝑧 + 𝑥𝑥
+ Residual Connections

Self-Attention + FFNN + Residual Connections

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

r2 r3

FFNN

r4r1

Let’s further pass each zi through a
FFNN

We add residual connection to help
ensure relevant info is getting forward
passed.

𝑣𝑣 = 𝑧𝑧 + 𝑥𝑥

We perform LayerNorm to stabilize the
network and allow for proper gradient
flow. You should do this after the FFNN,
too.

+ Residual Connections +LayerNorm

Self-Attention + FFNN + Residual Connections

Stabilizing Gradient Flow: Residual Connection
and Layernorm
• Residual connection: y = f(x) + x

• f might be a complex function and gives small gradients wrt x, adding x
back to f(x) gives higher values of the gradient

• Layer Normalization (LayerNorm):
• Another way to prevent vanishing gradients

arxiv.org/pdf/2409.12951

https://arxiv.org/pdf/2409.12951

Self-Attention + FFNN

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

r2 r3

FFNN

r4r1

Let’s further pass each zi through a
FFNN

We concat w/ a residual connection to
help ensure relevant info is getting
forward passed.

We perform LayerNorm to stabilize the
network and allow for proper gradient
flow. You should do this after the FFNN,
too.

Each zi can be computed in parallel,
unlike RNNs!

+ x Residual Connections +LayerNorm

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Yay! Our ri vectors are our new
representations, and this entire
process is called a Transformer
Encoder

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections +LayerNorm

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Yay! Our ri vectors are our new
representations, and this entire
process is called a Transformer
Encoder

Problem: there is no concept of
positionality. Words are weighted
as if a “bag of words”

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections +LayerNorm

The brown dog ran
x1 x2 x3 x4

z4z3z2z1

Self-attention Head

Yay! Our ri vectors are our new
representations, and this entire
process is called a Transformer
Encoder

Problem: there is no concept of
positionality. Words are weighted
as if a “bag of words”

Solution: add to each input word
xi a positional encoding

Input to the model is now
𝑥𝑥𝑖𝑖 + 𝑝𝑝𝑜𝑜𝑜𝑜𝑖𝑖

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections +LayerNorm

How to encode position information?
• Self attention doesn’t have a way to know whether an input token comes

before or after another
• Position is important in sequence modeling in NLP

• A way to introduce position information is add individual position
encodings to the input for each position in the sequence

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖 + 𝑝𝑝𝑝𝑝𝑠𝑠𝑖𝑖

Where 𝑝𝑝𝑝𝑝st is a position vector

Properties of a good positional embedding
• It should output a unique encoding for each time-step (word’s position in a

sentence)
• Distance between any two time-steps should be consistent across sentences

with different lengths.
• The cat sat on the mat
• The happy cat sat on the mat

• Our model should generalize to longer sentences without any efforts. Its
values should be bounded.

• It must be deterministic.

31

Absolute position embeddings
• Define a maximum context length you model can encode: say 1000

tokens.
• Create a separate embedding table for each position.
• Each index 1, 2, 3, … gets an embedding.
• Learn the embeddings with the model.

• Issues with Learned positions embeddings:
• Maximum length that can be presented is limited (what if I get a 2000 token input)
• Difficult to encode relative positions

• The cat sat on the mat
• The happy cat sat on the mat

Functional (and fixed) position embeddings
Sinusoidal embeddings

The frequencies are decreasing along the vector dimension. It forms a geometric progression on the
wavelengths.

Sinusoidal Embeddings: Intuition

34Transformer Architecture: The Positional Encoding - Amirhossein Kazemnejad's Blog

https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

Position Encodings

https://jalammar.github.io/illustrated-transformer/

Variants of Positional Embeddings
• Rotary Positional Embeddings (RoPE): [2104.09864] RoFormer:

Enhanced Transformer with Rotary Position Embedding (arxiv.org)

• AliBi: [2108.12409] Train Short, Test Long: Attention with Linear
Biases Enables Input Length Extrapolation (arxiv.org)

• No embeddings(!?): [2203.16634] Transformer Language Models
without Positional Encodings Still Learn Positional Information
(arxiv.org)

36

https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2108.12409
https://arxiv.org/abs/2203.16634
https://arxiv.org/abs/2203.16634
https://arxiv.org/abs/2203.16634

Words can relate in many ways, so it’s restrictive to rely on
just one Self-Attention Head in the system.

Let’s create Multi-headed Self-Attention

A Self-Attention Head has just one set of query/key/value
weight matrices wq, wk, wv

The brown dog ran
x1 x2 x3 x4

Self-attention Head

Each Self-Attention Head

produces a zi vector using

query, key, and value

vectors

We can, in parallel, use

multiple heads and concat

the zi‘s. For each input

create multiple query, key,

and value vectors

Encoder

Multi-head Attention
r2 r3

FFNN

r4r1

+ x Residual Connections +LayerNorm

z1A z1B z1C z2A z2B z2C z3A z3B z3C
z4A z4B z4C

The brown dog ran
x1 x2 x3 x4

Self-attention Head

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections +LayerNorm

z1A z1B z1C z2A z2B z2C z3A z3B z3C
z4A z4B z4C

To recap: all of this looks
fancy, but ultimately it’s just
producing a very good
contextualized embedding
ri of each word xi

The brown dog ran
x1 x2 x3 x4

Self-attention Head

Encoder

Transformer Encoder
r2 r3

FFNN

r4r1

+ x Residual Connections +LayerNorm

z1A z1B z1C z2A z2B z2C z3A z3B z3C
z4A z4B z4C

=

Variants of multi-head attention attention

GQA: Training Generalized Multi-Query Transformer Models from Multi-Head Checkpoints (Ainslie et al., 2023)

multi-head Grouped-query multi-query

queries

keys

values

The brown dog ran
x1 x2 x3 x4

Transformer Encoder

Encoder #1

r2 r3 r4r1

To recap: all of this looks
fancy, but ultimately it’s just
producing a very good
contextualized embedding
ri of each word xi

The brown dog ran
x1 x2 x3 x4

To recap: all of this looks
fancy, but ultimately it’s just
producing a very good
contextualized embedding
ri of each word xi

Why stop with just 1
Transformer Encoder? We
could stack several!

Transformer Encoder

Encoder #1

r2 r3 r4r1

The brown dog ran
x1 x2 x3 x4

To recap: all of this looks
fancy, but ultimately it’s just
producing a very good
contextualized embedding
ri of each word xi

Why stop with just 1
Transformer Encoder? We
could stack several!

Transformer Encoder

r2

Encoder #1

Encoder #2

Encoder #3

r3 r4r1

The brown dog ran
x1 x2 x3 x4

Transformer Encoder

r2

Encoder #1

Encoder #2

Encoder #3

r3 r4r1

=

The original Transformer model was intended for
Machine Translation, so it had Decoders, too

Outline

47

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

Outline

48

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

Encoder-Decoder Architectures
• Original transformer had two sub-models.

El gato se sento

En
co

de
r

De
co

de
r

Representation (compression) of the context

Produces the output sequence item by item
using the representation of the context.

Processes the context and
compiles it into a vector.

49

Encoder-Decoder Architectures

https://jalammar.github.io/visualizing-neural-machine-translation-mechanics-of-seq2seq-models-with-attention/50

<s> El perro marrón
x1 x2 x3 x4

Masked Self-attention Head

Decoder

Transformer Decoder
r2 r3

FFNN

r4r1

+ x Residual Connections +LayerNorm

z1A z1B z1C z2A z2B z2C z3A z3B z3C
z4A z4B z4C

=

Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Transformer Encoders
produce contextualized
embeddings of each word

Encoder #1

Encoder #2

Encoder #8

Transformer Decoders
generate new sequences of
text

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer

Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 Transformer Decoders are
identical to the Encoders,
except they have an
additional Attention Head in
between the Self-Attention
and FFNN layers.

This additional Attention
Head focuses on parts of
the encoder’s
representations.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer NOTE

Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 The query vector for a
Transformer Decoder’s
Attention Head (not Self-
Attention Head) is from the
output of the previous
decoder layer.

However, the key and value
vectors are from the
Transformer Encoders’
outputs.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer NOTE

Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 The query, key, and value
vectors for a Transformer
Decoder’s Self-Attention
Head (not Attention Head)
are all from the output of the
previous decoder layer.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer NOTE

Transformer Encoders and Decoders

The brown dog ran

x1 x2 x3 x4

Encoder #1

Encoder #2

Encoder #8 The Transformer Decoders
have positional embeddings,
too, just like the Encoders.

Critically, each position is
only allowed to attend to the
previous indices. This masked
Attention preserves it as
being an auto-regressive LM.

Decoder #1

Decoder #2

Decoder #8

hnědý pes běžel
Transformer IMPORTANT

Transformer [Vaswani et al. 2017]

• An encoder-decoder architecture
built with attention modules.

• 3 forms of attention

57

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Attention is All you Need (2017) https://arxiv.org/pdf/1706.03762.pdf

Loss Function: cross-entropy (predicting translated word)

Training Time: ~4 days on (8) GPUs

n = sequence length

d = length of representation (vector)

Q: Is the complexity of self-attention good?

Important: when learning dependencies b/w words, you don’t want long
paths. Shorter is better.

Self-attention connects all positions with a constant # of sequentially
executed operations, whereas RNNs require 𝑂𝑂(𝑛𝑛).

https://arxiv.org/pdf/1706.03762.pdf

Machine Translation results: state-of-the-art (at the time)

:

Impact of Transformers
• Let to better predictive models of language ala GPTs!

[”Efficient Content-Based Sparse Attention with Routing Transformers” Roy et al. 2020] 65

Impact of Transformers
• A building block for a variety of LMs

Decoders

Encoders

Encoder-
Decoders

 Examples: GPT-2, GPT-3, Llama models, and many many more

 Other name: causal or auto-regressive language model

 Nice to generate from; can’t condition on future words

 Examples: BERT, RoBERTa, SciBERT.

 Captures bidirectional context. How do we pretrain them?

 Examples: Transformer, T5, BART

 What’s the best way to pretrain them?

66

Transformer LMs + Scale = LLMs

• 2 main dimensions:
• Model size, pretraining data size

1000

800

600

400

200

0
Sep-17

N
um

 P
ar

am
et

er
s (

Bi
llio

n)

Model size over time

1400

1200

Apr-18 Oct-18 May-19 Dec-19 Jun-20 Jan-21 Jul-21

Wiki+books
(BERT,
2018)

~3B tokens

Wiki+books+ne
ws

(RoBERTa 2019)

~30B tokens

C4
(T5, 2020)

360B
tokens

Chinchilla
(2022)

1.4T tokens
Photo credit: https://www.microsoft.com/en-us/research/blog/using-deepspeed-and-
megatron-to-train-megatron-turing-nlg-530b-the-worlds-largest-and-most-powerful-
generative-language-model/

http://www.microsoft.com/en-us/research/blog/using-deepspeed-and-

Large Language Models

• Not only they improved performance on many NLP tasks, but
exhibited new capabilities

Transformers - Summary

• Self-attention + positional embedding + others = NLP go brr

• Much faster to train than any previous architectures, much
easier to scale

• Perform on par or better than previous RNN based models
○ Ease of scaling allows to extract much better performance

69

• What if we don’t want to decode/translate?

• Just want to perform a particular task (e.g., classification)

• Want even more robust, flexible, rich representation!

• Want positionality to play a more explicit role, while not being

restricted to a particular form (e.g., CNNs)

Outline

71

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

Outline

72

Self-Attention

Transformer Encoder

Transformer Decoder

BERT

Bidirectional Encoder Representations from Transformers

BERT

73

Bidirectional Encoder Representations from Transformers

BERT

Like Bidirectional LSTMs, let’s look in both directions

74

Bidirectional Encoder Representations from Transformers

BERT

Let’s only use Transformer Encoders, no Decoders

75

Bidirectional Encoder Representations from Transformers

BER
T

It’s a language model that builds rich representations

76

<CLS> brown dog

x1 x2 x3 x4

BERT has 2 training objectives:

Encoder #1

Encoder #2

Encoder #8
1. Predict the Masked word (a la CBOW)

15% of all input words are randomly masked.

• 80% become [MASK]

• 10% become revert back

• 10% become are deliberately corrupted as
wrong words

BERT

BERT

The

brown
lazy

playful

0.92
0.05
0.03

77

<CLS> brown dog

x1 x2 x3 x4

BERT has 2 training objectives:

Encoder #1

Encoder #2

Encoder #8
2. Two sentences are fed in at a time.
Predict the if the second sentence of input
truly follows the first one or not.

BERT

BERT

The

brown
lazy

playful

0.92
0.05
0.03

78

BERT

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf

Every two sentences are separated by a
<SEP> token.

50% of the time, the 2nd sentence is a
randomly selected sentence from the
corpus.

50% of the time, it truly follows the first
sentence in the corpus.

79

BERT

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf

NOTE: BERT also embeds the inputs by

their WordPiece embeddings.

WordPiece is a sub-word tokenization

learns to merge and use characters based

on which pairs maximize the likelihood of

the training data if added to the vocab.

80

BERT

Picture: https://jalammar.github.io/illustrated-bert/

One could extract the contextualized embeddings

81

BERT

Picture: https://jalammar.github.io/illustrated-bert/

Later layers have the best contextualized embeddings

82

BERT
BERT yields state-of-the-art (SOTA) results on many tasks

Source: original BERT paper: https://arxiv.org/pdf/1810.04805.pdf
83

BERT (a Transformer variant)

The brown dog

x1 x2 x3

Encoder #1

Encoder #8

r2 r3r1 r4

ran
x4

Typically, one uses BERT’s awesome

embeddings to fine-tune toward a different

NLP task (this is called Sequential Transfer

Learning)

yTakeaway
BERT is incredible for learning contextualized
embeddings of words and using transfer
learning for other tasks (e.g., classification).

Can’t generate new sentences though, due to
no decoders.

84

	Language Modeling III: Transformers
	Logistics
	Recap
	Transformers
	Outline
	Outline
	Defining Self-Attention
	Self-Attention
	Self-Attention
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Self-Attention
	Self-Attention
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Stabilizing Gradient Flow: Residual Connection and Layernorm
	Self-Attention + FFNN
	Transformer Encoder
	Transformer Encoder
	Transformer Encoder
	How to encode position information?
	Properties of a good positional embedding
	Absolute position embeddings
	Functional (and fixed) position embeddings�Sinusoidal embeddings
	Sinusoidal Embeddings: Intuition
	Position Encodings
	Variants of Positional Embeddings
	Slide Number 37
	Multi-head Attention
	Transformer Encoder
	Transformer Encoder
	Variants of multi-head attention attention
	Transformer Encoder
	Transformer Encoder
	Transformer Encoder
	Transformer Encoder
	Slide Number 46
	Slide Number 47
	Outline
	Encoder-Decoder Architectures
	Encoder-Decoder Architectures
	Transformer Decoder
	Transformer Encoders and Decoders
	Transformer Encoders and Decoders
	Transformer Encoders and Decoders
	Transformer Encoders and Decoders
	Transformer Encoders and Decoders
	Transformer [Vaswani et al. 2017]
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Impact of Transformers
	Impact of Transformers
	Transformer LMs + Scale = LLMs
	Large Language Models
	Transformers - Summary
	Slide Number 70
	Slide Number 71
	Slide Number 72
	BERT
	BERT
	BERT
	BERT
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	BERT (a Transformer variant)

