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Logistics
• Hw2, any questions?
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Last class Recap: Transformers
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Language Modeling with Transformers
Testing: Measuring Probability

• Language model is trained using a decoder-only transformer – goal is 
to model the probability of each token given the prefix

• Masked self-attention ensures we only condition on the prefix

• Computing probability of a sequence: (<s>, x1, x2, …, xn, </s>)
• Input to the transformer: (<s>, x1, x2, …, xn)
• The output is a sequence of probability distributions over the vocabulary via 

softmax. At input position t, the output represents the probability of the “next 
token”.

• Compute the probability of the sequence (x1, x2, … </s>) by indexing from the 
vocabulary distributions. -> this returns a vector

• Multiply to get probability of the sequence



Language Modeling with Transformers
Training

• Goal: maximize the likelihood of a corpus. 

• At training time, we know the “correct” next token. 
• Using previous slide, compute the probability or likelihood of the training 

corpus.
• Define the loss as the “negative log likelihood” – same as classification 

(but now classes = size of the vocabulary)
• The loss is also called the cross-entropy loss. 



Language Modeling with Transformers
Testing: Generating Text

• The input: 
• Can just be <s>
• Can be a “prompt” – a partial input which the model should continue such as: “<s> The 

cat”.

• Input the prompt to the model
• At the last token, compute a probability distribution via softmax (over the 

vocabulary)
• “Sample” from this distribution to generate the next token – same as a 

throwing a “V” sided dice (with each side having a different probability).
• The sampled index is your next token. Let’s say we sampled “ran”
• Now input to the transformer “<s> The cat ran”. Repeat the process
• Stop when “</s>” is generated or a desired number of tokens are generated.



Today’s Agenda: Tokenization

I. Word-level tokenization

II. Character / byte level tokenization

III. Subword Tokenization

I. BPE (primary topic)

II. WordPiece

III. Unigram (depending on time)



What’s tokenization
Recall: A language model is a probability distribution over a sequence of “tokens”; each token is 
from a “vocabulary”.

What is a token: “basic unit that need not be decomposed for further processing” [Webster and Kit, 1992]

Tokenization: Splitting or segmenting a “string” of text into a sequence of tokens
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“I love watching the television”

x̄ = ⟨I, love, watching, the, television⟩

https://aclanthology.org/C92-4173/


Why do we need to tokenize?

• Tokenization is not a typical preprocessing step in most 
machine learning domains

• Neural networks work with real-valued numbers. Most 
machine learning deals with continuous data but text is 
discrete

• Text needs to be converted to a form that a model can 
consume/generate.



Set of all tokens form a vocabulary

• Given a tokenization algorithm
○ Tokenize a corpus of text
○ Collect all unique tokens (aka types)  vocabulary

• The role of vocabulary in a language model
○ The vocabulary and its size is part of the model architecture
○ It defines the size of the input embedding table and final output layer

■ large vocabulary = more parameters



A simple tokenizer: Split by whitespace?

• Tokenization is not always this simple

• Such as, what will we do with the following strings:

- “amazing!”, “state-of-the-art”, “unthinkable”, “prize-winning”, “aren’t”, “O’Neill”

- Some languages don’t even use spaces to mark word boundaries!
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“I love watching the television”

x̄ = ⟨I, love, watching, the, television⟩

Çekoslovakyalılaştıramadıklarımızdanmışsınız
You are one of those whom we could not turn into a 
Czechoslovakian.

私は日本語を勉強しています

I am studying Japanese.



What about a word level tokenizer?
• Define each token as a word or a punctuation: 

○ What is a word: smallest unit of language that carries meaning and can 
stand alone or combine with other units to create more complex meanings

• How to split into words?
○ For languages like English: 

■ Could be simple regexes: split on all spaces and punctuation
● What about “The value of pi = 3.14”, “the IP address is 0.0.0.0”
● What about “He got cold feet”  should cold feet be one or two words?

○ For languages like Chinese:
■ 我爱自然语言处理 (I love Natural Language Processing)
■ Need specialized tools (e.g. jieba)



Some related terminology
• A morpheme is the smallest meaning-bearing unit of a language

• “unlikeliest” has the morphemes {un-, likely, -est}

• Morphology is the study of the way words are built up from morphemes

• Word forms are the variations of a word that express different grammatical categories

• Tense (when something happened; past, present, future) 

• Case (inflecting nouns/pronoun and their modifiers to express their relationship with other words; English has largely lost 

its inflected case system) 

• Number (singular/plural) 

• Gender (masculine, feminine, neuter; not extensively used in English)

• and thus help convey the specific meaning and function of the word in a sentence

14



Word level tokenizer – How to define a vocabulary?

• Given a tokenization algorithm
• Tokenize a corpus of text
• Collect all unique tokens  vocabulary

• For a English corpus, a large corpus can have 1M+ unique words
• Vocabulary becomes too large

• A popular solution: Cut this list to include only K tokens.
• How to chose K – based on frequency
• What to do with the rest? – replace with an UNK “unknown” token
• Word level tokenizers lead to “closed” vocabulary models.



Handling Unknown Words

• What happens when we encounter a word that we have never seen in our training data?

- Not much we can do

- Except assigning to it a special <UNK> token

- Why this is bad?
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Limitations of <UNK>

• Generally, we lose most of the information the word conveys. UNKs don’t give 
features for novel words that are useful anchors of meaning 

• What if you want to generate a word which is not in the vocabulary? Imagine 
ChatGPT generating UNK.

• Especially hurts in [productive] languages with many rare words/entities

○ The chapel is sometimes referred to as "Hen Gapel Lligwy" ("hen" being the Welsh word
for "old" and "capel" meaning "chapel").

○ The chapel is sometimes referred to as " Hen <unk> <unk> " (" hen " being the Welsh word
for " old " and " <unk> " meaning " chapel ").
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Word Level Tokenization
Other Limitations

• Word-level tokenization treats
different forms of the same root as 
completely separate (e.g., “open”,
“opened”, “opens”, “opening”, 
etc)

• This means separate features or
embeddings.
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A simpler tokenizer: Character-level 

Issues

• Make sequences very long

• Word-level models provide an inductive bias to models. BUT character-level 
models must learn to compose characters into words. 

○ Need deeper models

19[Jurafsky and Martin Sec 2.4 p17]

I love watching the television

<I _ l o v e _ w a t c h i n g _ t h e _ t e l e v i s i o n>  

https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf


Current standard: Subword Tokenization
• “Word”-level: issues with unknown words 

and information sharing, and gets complex
fast

- Also, fits poorly to some languages

• Character-level: long sequences, the model
needs to do a lot of heavy lifting in 
representing that is encoded in plain-sight

• Let’s find a middle ground!

• Subword tokenization first developed for 
machine translation

- Based on byte pair encoding (Gage, 
1994)

• Now, used everywhere
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Neural Machine Translation of Rare Words with Subword Units

Rico Sennrich and Barry Haddow and Alexandra Birch
School of Informatics, University of Edinburgh
{rico.sennrich,a.birch}@ed.ac.uk, 

bhaddow@inf.ed.ac.uk

The main motivation behind this 
paper is that the translation of some 
words is transparent in that they are 
translatable by a competent translator 
even if they are novel to him or her, 
based on a translation of known 
subword units such as morphemes or 
phonemes.

mailto:bhaddow@inf.ed.ac.uk


A redefinition of the notion of tokenization
Due to:

○ Scientific results: The impact of sub-word segmentation on machine translation performance in 2016
○ Technical requirements: A fixed-size vocabulary for neural language models & a reasonable vocabulary size

…in current NLP, the notion of token and tokenization changed

“Tokenization” is now the task of segmenting a sentence into non-typographically (& non-linguistically) 
motivated units, which are often smaller than classical tokens, and therefore often called sub-words

Typographic units (the “old” tokens) are now often called “pre-tokens”, and what used to be called 
“tokenization” is therefore called nowadays “pre-tokenization”

○ https://github.com/huggingface/tokenizers/tree/main/tokenizers/src/pre_tokenizers

Unseen word can be represented by some sequence of known subwords; “lower”=”low”+ “er”

21

[Mielke et al., 2021]

https://github.com/huggingface/tokenizers/tree/main/tokenizers/src/pre_tokenizers
https://arxiv.org/abs/2112.10508


Byte-Pair-Encoding (BPE) 
[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé 
(2019) for more]

Main idea: Use our data to automatically tell us what the tokens should be

Token learner:
Raw train corpus ⇒Vocabulary (a set of tokens)

Token segmenter: 
Raw sentences ⇒Tokens in the vocabulary

22[Jurafsky & Martin (2023)]

https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/P16-1162/
https://aclanthology.org/D19-1141/
https://aclanthology.org/D19-1141/
https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf


Byte-Pair-Encoding (BPE) – Token learner
[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]

Raw train corpus ⇒Vocabulary (a set of tokens)

• Pre-tokenize the corpus in words & append a special end-of-word symbol _ to each word

• Initialize vocabulary with the set of all individual characters

• Choose 2 tokens that are most frequently adjacent (“A”, “B”)

• Respect word boundaries: Run the algorithm inside words

• Add a new merged symbol (“AB”) to the vocabulary

• Change the occurrence of the 2 selected tokens with the new merged token in the corpus

• Continues doing this until k merges are done

23[Jurafsky & Martin (2023)]

https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/P16-1162/
https://aclanthology.org/D19-1141/
https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf


Byte-Pair-Encoding (BPE) – Token learner Example

24[Example from Jurafsky & Martin (2023), pages 18–19]

word occurrence 
count in the corpus

each word is split into characters

https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf


Byte-Pair-Encoding (BPE) – Token learner Example

25[Example from Jurafsky & Martin (2023), pages 18–
19]

⚘ Counts all pairs of adjacent symbols
⚘ The most frequent is the pair e r [a total of 9 occurrences]
⚘ Merge these symbols, treating er as one symbol, & add the new symbol to the vocabulary

https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf


Byte-Pair-Encoding (BPE) – Token learner Example

26[Example from Jurafsky & Martin (2023), pages 18–
19]

⚘ Counts all pairs of adjacent symbols
⚘ The most frequent is the pair er _
⚘ Merge these symbols, treating er_ as one symbol, & add the new symbol to the vocabulary

https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf


Byte-Pair-Encoding (BPE) – Token learner Example

27[Example from Jurafsky & Martin (2023), pages 18–19]

⚘ Counts all pairs of adjacent symbols
⚘ The most frequent is the pair n e
⚘ Merge these symbols, treating ne as one symbol, & add the new symbol to the vocabulary

https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf


Byte-Pair-Encoding (BPE) – Token learner Example

28[Example from Jurafsky & Martin (2023), pages 18–19]

Final vocabulary

https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf


Byte-Pair-Encoding (BPE) – Token segmenter
[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]

• The token segmenter is used to tokenize a test sentence
○ Goal: Apply the merges we’ve learned from the training data, greedily, in the order we 

learned them

• First, we segment each test sentence word into characters

• Then, we apply the first merge rule
• E.g., replace every instance of e r in the test corpus with er

• Then the second merge rule 
• E.g., replace every instance of er _ in the test corpus with er_

• And so on

29[Example from Jurafsky & Martin (2023), pages 18–19]

https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/P16-1162/
https://aclanthology.org/D19-1141/
https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf


Byte-Pair-Encoding (BPE) – Token segmenter
[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]

• Test example: slow_  s l o w_  s lo w_ -> s low_

• Test example: now  n o w

BPE can tokenize a word never seen at training time. 
Leads to an open vocabulary model (well, almost)
Can often learn morphological segmentations

Deescalation  De escalat ion 

30[Example from Jurafsky & Martin (2023), pages 18–19]

https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/P16-1162/
https://aclanthology.org/D19-1141/
https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf


A variant of BPE: WordPiece
used in BERT and some follow ups

• Training algorithm: Same as BPE

• Segmentation algorithm: greedily pick the longest prefix that 
exists in the vocabulary (and repeat)

○ Slow_  s low_ [stop]



BPE/Wordpiece summary

● Start with a character vocabulary

● Merge frequent bigrams

● Repeat until a desired vocab size/merge size is reached.



Unigram LM Tokenizer
1. Start with a large base vocabulary, remove tokens until a desired 

size is reached.

1. How to construct a base vocabulary: all substrings of pre-tokenized 
words OR start with a large BPE vocabulary. 

1. How to remove tokens:
a. Compute the unigram LM loss over the corpus (more details later)
b. Removing tokens increases this loss. 
c. Select and remove tokens that increase it the least.
d. Repeat



Base Vocabulary

● The corpus: 
("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

● Initial Vocabulary (all strict substrings)
("h", 15) ("u", 36) ("g", 20) ("hu", 15) ("ug", 20) ("p", 17) ("pu", 17) ("n", 16)

("un", 16) ("b", 4) ("bu", 4) ("s", 5) ("hug", 15) ("gs", 5) ("ugs", 5)



Unigram LM loss 

● Unigram LM loss = negative log probability of the corpus.

● Probability of a corpus = product of marginal probability of 
individual words

p(pug hugs bugs) = p(pug) x p(hugs) x p (bugs)



Probability of a word
● product of marginal probability of its subwords (based on frequency)

p(pug) = p(“p”) x p(“u”) x p(“g”) 

Or, p(pug) = p(“pu”) x p(“g”)

Or, p(pug) = p(“p”) x p(“ug”)

Choose highest of all possible splits (why?)

● How to this efficiently: Dynamic programming (Viterbi algorithm)



Unigram Tokenization Algorithm
1. Start with a base vocabulary

2. Compute the unigram loss, L, over the corpus

3. For every token, w, in the vocabulary
a. Remove w from the vocabulary and recompute the loss, L’(w)
b. Define score(w) = L’(w) - L

4. Compute w* = min_w score(w). 
a. Remove w* from the vocabulary.
b. Got to step 2. Repeat until a desired vocabulary size is reached.

VERY SLOW!



Unigram Tokenization Algorithm (Slightly Faster)
1. Start with a base vocabulary

2. Compute the unigram loss, L, over the corpus

3. For every token, w, in the vocabulary
a. Remove w from the vocabulary and recompute the loss, L’(w)
b. Define score(w) = L’(w) - L

4.Compute W = x% of tokens with the lowest score.
a. Remove w* from the vocabulary.
b. Got to step 2. Repeat until a desired vocabulary size is reached.

VERY SLOW!



Unigram Tokenization Algorithm (Slightly Faster)
1. Start with a base vocabulary

1. Compute the unigram loss, L

1. For every token, w, in the vocabulary
a. Remove w from the vocabulary and recompute the loss, L’(w)
b. Define score(w) = L’(w) - L

1. Compute W = x% of tokens with the lowest score.
a. Remove W from the vocabulary.
b. Go to step 2.



How to tokenize once the vocabulary is decided
● Tokenization which maximizes the unigram probability of the word 

● (or find top k tokenizations)

● “Unhug” (For each position, the subwords with the best scores ending in that position:)

Character 0 (u): "u" (score 0.171429)

Character 1 (n): "un" (score 0.076191)

Character 2 (h): "un" "h" (score 0.005442)

Character 3 (u): "un" "hu" (score 0.005442)

Character 4 (g): "un" "hug" (score 0.005442) [final tokenization]



Unigram vs BPE

1. Why unigram over BPE and WordPiece?
a. Unigram finds optimal coding length of a sequence (according to 

Shannon’s entropy).
b. Unigram allows sampling multiple tokenizations for every word –

subword regularization – robustness

1. Why is Unigram tokenization not more popular?
a. In many papers simply referred to as SentencePiece, which is actually 

not a tokenizer but a library wrapping several tokenizers
b. Does the actual subword tokenizer matter as we scale up models?



Subword methods are not TRULY open-vocabulary

• What if you encounter a character not seen at training time?

• For example, a BPE model trained on only English encounters a 
Chinese character at test time --- it gets assigned UNK

• How to solve this issue?
• Train on a mix of all characters? Accounting for all languages, they are millions 

of characters – vocabulary size would be too large



Solution: Byte-level subword Models (BBPE)
• Every written language is represented in Unicode

• Each character is a sequence of “bytes”.
• Each byte is 8-bit. Total 256 unique byte values
• Each character requires between 1 to 4 bytes.

Solution: Treat a corpus as a sequence of byte. Start the vocabulary with all bytes (256) and train a BPE 
model. TRULY Open Vocabulary. Works for all characters!*

Unicode is a text encoding standard designed to support the use of 
text in all of the world's writing systems that can be digitized. It has 
multiple versions like UTF-8, UTF-16, UTF-32. UTF-8 is the most 
common one.



Subword Models -- Summary

• Split text in tokens learned statistically from the training 
corpus

• Makes the model open vocabulary

• Subword methods prove to be an effective method of 
“compressing text”



Issues with subword models
BERT thinks the sentiment of 
"superbizarre" is positive because its 
tokenization contains the token "superb"

45
[Hofmann et al., 2021]

https://aclanthology.org/2021.acl-long.279/


Non-concatenative Languages



Subword Tokenization and “noise”

• He fell and broke his coccix (vs coccyx)

• Neighbor = 1 token, neighbour = two tokens

• John Smith = 2 tokens, Srinivas Ramanujam = ??



Subword Tokenization and “numbers”

• Why are LMs bad at basic arithmetic?
○ 3.14 is tokenized as 3.14
○ 3.15 is tokenized as 3 . 15



Natural phenomena like diacritics or a little easily human-readable noise lead to 
unexpected BPE sequences and catastrophic translation failure

[Salesky et al., 2021]
49

https://aclanthology.org/2021.emnlp-main.576/


Sequence Lengths, Costs, and Performance

[2305.13707] Do All Languages Cost the Same? Tokenization in the Era of Commercial Language Models

https://arxiv.org/abs/2305.13707


Sequence Lengths, Costs, and Performance

LLM APIs charge per token

[2305.13707] Do All Languages Cost the Same? Tokenization in the Era of Commercial Language Models

https://arxiv.org/abs/2305.13707


Sequence Lengths, Costs, and Performance

[2305.13707] Do All Languages Cost the Same? Tokenization in the Era of Commercial Language Models

https://arxiv.org/abs/2305.13707


Tokenization

53
[`Let's build the GPT Tokenizer’ by Andrej Karpathy]

https://youtu.be/zduSFxRajkE?feature=shared
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Recent tweaks to subword tokenizers
• Tokenize each digit separately (i.e. no merge on digits)

• Add special tokens to deal with everything else:
○ E.g. special tokens for keywords from programming languages

• Train the tokenizer on a more balanced dataset. 
○ Apply tricks like “alpha-sampling” – up sample lower resource 

languages and scripts to up their frequency.
○ Does not solve all issues but helps.
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