
Tokenization Contd. /
Masked LMs

CSE 5525: Foundations of Speech and Natural Language
Processing

https://shocheen.github.io/courses/cse-5525-spring-2025

Logistics
• Hw2 deadline: Monday.

• Final Project: sample project proposals are announced on teams.
Will announce additional instructions for project proposals on
Monday.

2

Last Class Recap: Subword Tokenization
• “Word”-level: issues with unknown words and information sharing, and gets complex fast

- Also, fits poorly to some languages

• Character-level: long sequences, the model needs to do a lot of heavy lifting in representing
that is encoded in plain-sight

• Subword tokenization – a middle ground

• Byte Pair Encoding or BPE

3

Byte-Pair-Encoding (BPE) – Token learner
[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]

Raw train corpus ⇒Vocabulary (a set of tokens)

• Pre-tokenize the corpus in words & append a special end-of-
word symbol _ to each word

• Initialize vocabulary with the set of all individual bytes

• Choose 2 tokens that are most frequently adjacent (“A”, “B”)

• Respect word boundaries: Run the algorithm inside words

• Add a new merged symbol (“AB”) to the vocabulary

• Change the occurrence of the 2 selected tokens with the new
merged token in the corpus

• Continues doing this until k merges are done

4

[Jurafsky & Martin (2023)]

https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/P16-1162/
https://aclanthology.org/D19-1141/
https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) – Token learner Example

5[Example from Jurafsky & Martin (2023), pages 18–19]

word occurrence
count in the corpus

each word is split into characters

https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) – Token learner Example

6[Example from Jurafsky & Martin (2023), pages 18–
19]

⚘ Counts all pairs of adjacent symbols
⚘ The most frequent is the pair e r [a total of 9 occurrences]
⚘ Merge these symbols, treating er as one symbol, & add the new symbol to the vocabulary

https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) – Token learner Example

7[Example from Jurafsky & Martin (2023), pages 18–
19]

⚘ Counts all pairs of adjacent symbols
⚘ The most frequent is the pair er _
⚘ Merge these symbols, treating er_ as one symbol, & add the new symbol to the vocabulary

https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) – Token learner Example

8[Example from Jurafsky & Martin (2023), pages 18–19]

⚘ Counts all pairs of adjacent symbols
⚘ The most frequent is the pair n e
⚘ Merge these symbols, treating ne as one symbol, & add the new symbol to the vocabulary

https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) – Token learner Example

9[Example from Jurafsky & Martin (2023), pages 18–19]

Final vocabulary

https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf

After Training BPE
• You get a list of ordered merge rules

• A vocabulary: set of all unique tokens in the training corpus.

Byte-Pair-Encoding (BPE) – Token segmenter
[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]

• The token segmenter is used to tokenize a test sentence
○ Goal: Apply the merges we’ve learned from the training data, greedily, in the order we

learned them

• First, we segment each test sentence word into characters

• Then, we apply the first merge rule
• E.g., replace every instance of e r in the test corpus with er

• Then the second merge rule
• E.g., replace every instance of er _ in the test corpus with er_

• And so on

11[Example from Jurafsky & Martin (2023), pages 18–19]

https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/P16-1162/
https://aclanthology.org/D19-1141/
https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) – Token segmenter
[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]

• Test example: slow_ s l o w_ s lo w_ -> s low_

• Test example: now n o w

BPE can tokenize a word never seen at training time.
Leads to an open vocabulary model (well, almost)
Can often learn morphological segmentations

Deescalation De escalat ion

12[Example from Jurafsky & Martin (2023), pages 18–19]

https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/P16-1162/
https://aclanthology.org/D19-1141/
https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf

BPE Summary
• A bottom-up tokenizer

• Start with bytes / characters and keep merging until you reach a limit
• A variant: WordPiece which uses longest prefix instead of merge rules to

tokenize.

• Next up, Unigram-LM tokenizer
• Takes a top-down approach

Unigram LM Tokenizer
1. Start with a large base vocabulary, remove tokens until a desired

size is reached.

1. How to construct a base vocabulary: all substrings of pre-tokenized
words

1. How to remove tokens:
a. Compute the unigram LM loss over the corpus (more details later)
b. Removing tokens increases this loss.
c. Select and remove tokens that increase it the least.
d. Repeat

Base Vocabulary

● The corpus:
("hug", 10), ("pug", 5), ("pun", 12), ("bun", 4), ("hugs", 5)

● Initial Vocabulary (all strict substrings)
("h", 15) ("u", 36) ("g", 20) ("hu", 15) ("ug", 20) ("p", 17) ("pu", 17) ("n", 16)

("un", 16) ("b", 4) ("bu", 4) ("s", 5) ("hug", 15) ("gs", 5) ("ugs", 5)

Unigram LM loss

● Unigram LM loss = negative log probability of the corpus.

● Probability of a corpus = product of marginal probability of
individual words

p(pug hugs bugs) = p(pug) x p(hugs) x p (bugs)

Probability of a word
● product of marginal probability of its subwords (based on frequency)

p(pug) = p(“p”) x p(“u”) x p(“g”)

Or, p(pug) = p(“pu”) x p(“g”)

Or, p(pug) = p(“p”) x p(“ug”)

Choose highest of all possible splits

● How to this efficiently: Dynamic programming (Viterbi algorithm)

Unigram Tokenization Algorithm
1. Start with a base vocabulary

2. Compute the unigram loss, L, over the corpus

3. For every token, w, in the vocabulary
a. Remove w from the vocabulary and recompute the loss, L’(w)
b. Define score(w) = L’(w) - L

4. Compute w* = min_w score(w).
a. Remove w* from the vocabulary.
b. Got to step 2. Repeat until a desired vocabulary size is reached.

VERY SLOW!

Unigram Tokenization Algorithm (Slightly Faster)
1. Start with a base vocabulary

2. Compute the unigram loss, L, over the corpus

3. For every token, w, in the vocabulary
a. Remove w from the vocabulary and recompute the loss, L’(w)
b. Define score(w) = L’(w) - L

4.Compute W = x% of tokens with the lowest score.
a. Remove w* from the vocabulary.
b. Got to step 2. Repeat until a desired vocabulary size is reached.

VERY SLOW!

Unigram Tokenization Algorithm (Slightly Faster)
1. Start with a base vocabulary

1. Compute the unigram loss, L

1. For every token, w, in the vocabulary
a. Remove w from the vocabulary and recompute the loss, L’(w)
b. Define score(w) = L’(w) - L

1. Compute W = x% of tokens with the lowest score.
a. Remove W from the vocabulary.
b. Go to step 2.

How to tokenize once the vocabulary is decided
● Tokenization which maximizes the unigram probability of the word

● (or find top k tokenizations)

● “Unhug” (For each position, the subwords with the best scores ending in that position:)

Character 0 (u): "u" (score 0.171429)

Character 1 (n): "un" (score 0.076191)

Character 2 (h): "un" "h" (score 0.005442)

Character 3 (u): "un" "hu" (score 0.005442)

Character 4 (g): "un" "hug" (score 0.005442) [final tokenization]

Unigram vs BPE

1. Why unigram over BPE and WordPiece?
a. Unigram finds optimal coding length of a sequence (according to

Shannon’s entropy).
b. Unigram allows sampling multiple tokenizations for every word –

subword regularization – robustness

1. Why is Unigram tokenization not more popular?
a. In many papers simply referred to as SentencePiece, which is actually

not a tokenizer but a library wrapping several tokenizers
b. Does the actual subword tokenizer matter as we scale up models?

Subword Models -- Summary

• Split text in tokens learned statistically from the training
corpus

• Makes the model open vocabulary

• Subword methods prove to be an effective method of
“compressing text”

Issues with subword models
BERT thinks the sentiment of
"superbizarre" is positive because its
tokenization contains the token "superb"

24
[Hofmann et al., 2021]

https://aclanthology.org/2021.acl-long.279/

Non-concatenative Languages

Subword Tokenization and “noise”

• He fell and broke his coccix (vs coccyx)

• Neighbor = 1 token, neighbour = two tokens

• John Smith = 2 tokens, Srinivas Ramanujam = ??

Subword Tokenization and “numbers”

• Why are LMs bad at basic arithmetic?
○ 3.14 is tokenized as 3.14
○ 3.15 is tokenized as 3 . 15

Natural phenomena like diacritics or a little easily human-readable noise lead to
unexpected BPE sequences and catastrophic translation failure

[Salesky et al., 2021]
28

https://aclanthology.org/2021.emnlp-main.576/

Sequence Lengths, Costs, and Performance

[2305.13707] Do All Languages Cost the Same? Tokenization in the Era of Commercial Language Models

https://arxiv.org/abs/2305.13707

Sequence Lengths, Costs, and Performance

LLM APIs charge per token

[2305.13707] Do All Languages Cost the Same? Tokenization in the Era of Commercial Language Models

https://arxiv.org/abs/2305.13707

Tokenization

31
[`Let's build the GPT Tokenizer’ by Andrej Karpathy]

https://youtu.be/zduSFxRajkE?feature=shared

32

Masked Language Models

Reminder: Different senses, but same
embedding
● The Amazon Basin is home to the largest rainforest on Earth.
● She filled the basin with water to wash the dishes.
● The neurosurgeon examined the cranial basin for signs of trauma.

word2vec, GloVe, or other static embeddings assign exactly the same embedding to each of these
occurrences of the word “basin” despite their different senses

Our next goal:
Assign different, contextualized embeddings based on the surrounding context

The final transformer encoder representation of each token is highly contextualized

35

Deep Averaging Network (DAN)

36

Reminder: Token order & long-range
dependencies with DAN

[Iyyer et al., 2015]

Transformer considers token order with
positional embeddings

Due to multi-headed self-attention & cross-
attention, we are able to model long-range
dependencies

https://aclanthology.org/P15-1162/

Reminder: Non-convex optimization, so
initialization matters

37
Source: https://www.ibm.com/topics/gradient-descent

Instead of starting from randomly initialized weights, we are going to make use of large
corpora to pretrain a model and find weights that are a much better starting point for
all NLP tasks than random weights

We are going to talk about this next!

Randomly initialized transformer still has
this issue

https://www.ibm.com/topics/gradient-descent

38

+

text + labels neural network starting
from random weights

+

(not)
spam

Standard
Supervised
Deep
Learning

Pretrain-then-Finetune (also called post-train)

39

Stage 2:
Finetune the model

text

text + labels

Objective: generate next or masked word
(does not require that people label the next word)

Objective: standard supervised training

Stage 1:
Pretrain a model

+

+

partial input

next word

neural network
starting from

random
weights

neural network
starting from

pretrained
weights

arxiv.org/pdf/2502.03038

https://arxiv.org/pdf/2502.03038

LM pretraining
• LMs so far: predict the next token given the previous tokens

also sometimes called “Causal Language Modeling”.

• This enables a self-supervised task – train on only raw text
(similar to word2vec).

• And get really interesting and useful representations.
○ With many usecases

41

• LMs so far: predict the next token given the previous tokens

• Since we have a complete sentence?
- So: can we incorporate future context to learn better representations

• How can we formulate a self-supervised prediction task?

Masked LMs

4
2

Masked LMs

4
3Image from https://www.holisticai.com/blog/from-transformer-architecture-to-prompt-engineering

(output final layer) vector(Sylvester) ... vector(<mask>) vector(films) vector(in) vector(his) ... vector(the)
vector(<mask>) ... vector(<mask>) vector(story)...

Masked Language Modeling (MLM)

(text) Sylvester Stallone has made some terrible films in his lifetime, but this has got to be one of the
worst. A totally dull story...

(masked text) Sylvester Stallone has made some <mask> films in his lifetime, but this has got to be one of the
<mask>. A totally <mask> story...

(output final layer) vector(Sylvester) ... vector(<mask>) vector(films) vector(in) vector(his) ... vector(the)
vector(<mask>) ... vector(<mask>) vector(story)...

(text) Sylvester Stallone has made some terrible films in his lifetime, but this has got to be one of the
worst. A totally dull story...

(masked text) Sylvester Stallone has made some <mask> films in his lifetime, but this has got to be one of the
<mask>. A totally <mask> story...

loss(predicted_word,“terrible”)

Masked Language Modeling (MLM)

(output final layer) vector(Sylvester) ... vector(<mask>) vector(films) vector(in) vector(his) ... vector(the)
vector(<mask>) ... vector(<mask>) vector(story)...

(text) Sylvester Stallone has made some terrible films in his lifetime, but this has got to be one of the
worst. A totally dull story...

(masked text) Sylvester Stallone has made some <mask> films in his lifetime, but this has got to be one of the
<mask>. A totally <mask> story...

loss(predicted_word,“terrible”)loss(predicted_word,“worst”)
loss(predicted_word,“dull”) average these losses and do

a gradient descent step

Masked Language Modeling (MLM)

• Encoders assume we have the complete sequence

• Self-attention computes weighted sum over entire context (i.e.,
entire sequence)

• There is no generation problem, we just want representations
- We will learn how to use them later on

Masked LM: Only using Encoder transformer

4
7

• Encoder transformer

• BERT Base: 12 transformer blocks, 768-dim word-piece tokens,
12 self-attention heads → 110M parameters

• BERT Large: 24 transformer blocks, 1024-dim word-piece tokens,
16 self-attention heads → 340M parameters

• 100’s of variants since BERT came out.

Bidirectional Encoder Representations from Transformers
BERT

48

[Devlin et al. 2018]

• One or two sentences
- Word-piece token embeddings
- Position and segment embeddings

Inputs
BERT

49

[figure from Devlin et al. 2018]

• Data: raw text

• Two objectives:
- Masked LM
- Next-sentence prediction

• Later development in “RoBERTa”:
- More data, no next-sentence prediction, dynamic masking

Training
BERT

50

• Randomly mask and predict 15% of the tokens
• For 80% (of these 15%) replace the input token with a special token

[MASK]

• For 10% replace with a random token from the vocabulary

• For 10% keep the same (input and output are the same, trivial task)

Masking Recipe for Training
BERT

51

• Input: [CLS] Text chunk 1 [SEP] Text chunk 2

• Training data: 50% of the time, take the true next chunk of text,
50% of the time take a random other chunk

• Predict whether the next chunk is the true next chunk

• Prediction is done on the [CLS] output representation

Next-sentence Prediction
BERT

52

• Central Word Prediction Objective
(context2vec) [Melamud et al. 2016]

• Machine Translation Objective (CoVe)
[McMann et al. 2017]

• Bi-directional Language Modeling
Objective (ELMo) [Peters et al. 2018]

• Then BERT came …
• … and many more followed (the

whole sesame street arrived)

Related Techniques
BERT

53

https://www.aclweb.org/anthology/K16-1006
https://arxiv.org/abs/1708.00107
https://arxiv.org/abs/1802.05365

• We can feed complete sentences to BERT

• For each token, we get a contextualized representation
- Meaning: computed taking the other tokens in the sentence into acocunt

• In contrast to word2vec representations that fixed and do not
depend on context

• While word2vec vectors are forced to mix multiple senses, BERT
can provide more instance-specific vectors

What Do We Get?
BERT

54

• Widely supported by existing frameworks
- E.g., Transformers library by Hugging Face

• We will soon see how to use it when working with annotated
data

• Large BERT models quickly outperformed human performance
on several NLP tasks

- But what it meant beyond benchmarking was less clear

• Started an arms race towards bigger and bigger models, which
quickly led to the LLMs of today

How Do We Use It?
BERT

55

• primarily used for discriminative tasks, Cannot generate text
• Can manipulate in weird ways to generate text but not the original

purpose of this model

What It Is Not Great For?
BERT

56

Figure: Jay Alammar

Finetuning a MLM-pretrained model

https://jalammar.github.io/illustrated-transformer/

Figure: Jay Alammar

Finetuning a MLM-pretrained model

https://jalammar.github.io/illustrated-transformer/

Output layer when finetuning a MLM-pretrained LM

59
Figure: A Visual Guide to Using BERT for the First Time by Jay Alammar

✕

vector(input sentence)

output matrix

“+” softmax
i-th dimension ～
the “probability” of the i-
th label=

the logits vector
predict the highest “probability” label

The values in this matrix must be learned for each
new task from scratch during the finetuning stage

https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

Finetuning a MLM-pretrained model
⚘ Add a special [CLS] token to the beginning of the

sequence & [SEP]at the end of it
⚘ Use the d-dimensional vector representation of the

[CLS] token from the final layer to represent the
entire sequence
○ Reminder: This makes sense because of the self-

attention
⚘ Replace the pretrained output layer with a new

output layer that has a new randomly initialized
output weight matrix of the size d x n_labels

⚘ Multiply it with the d x n_labels output matrix
⇒ softmax ⇒ argmax = predicted label

⚘ Cross entropy / NLL loss using the human-
annotated labels

Figure: Jay Alammar

https://jalammar.github.io/illustrated-transformer/

What can BERT do?

Devlin et al. (2019)

‣ Artificial [CLS] token is used as the vector to do classification from

‣ BERT can also do tagging by predicting tags at each word piece

‣ Sentence pair tasks (entailment): feed both sentences into BERT

What can BERT do?

‣ How does BERT model sentence pairs?

‣ Transformers can capture interactions between the two sentences, even though the NSP
objective doesn’t really cause this to happen

Transformer

Transformer

…

[CLS] A boy plays in the snow [SEP] A boy is outside

Entails (first sentence implies second is true)

SQuAD
Q: What was Marie Curie the first female recipient of?

‣ Assume we know a passage that contains the answer. More recent work has
shown how to retrieve these effectively (will discuss when we get to QA)

Answer = Nobel Prize

SQuAD
Q: What was Marie Curie the first female recipient of?

‣ Predict answer as a pair of (start, end) indices given question q and passage p;
compute a score for each word and softmax those

QA with BERT

Devlin et al. (2019)

What was Marie Curie the first female recipient of ? [SEP] One of the most famous people born in Warsaw was Marie …

BERT results, BERT variants

Evaluation: GLUE

Wang et al. (2019)

Results

Devlin et al. (2018)

‣ Huge improvements over prior work

‣ Effective at “sentence pair” tasks: textual entailment (does sentence A imply sentence B), paraphrase
detection

Significant improvements from pretraining

69Source: Devlin et al., 2018 (BERT)

https://arxiv.org/abs/1810.04805

Significant improvements from
pretraining

70Source: Devlin et al., 2018 (BERT)

https://arxiv.org/abs/1810.04805

Significant improvements from
pretraining

71Source: Devlin et al., 2018 (BERT)

https://arxiv.org/abs/1810.04805

RoBERTa

Liu et al. (2019)

‣ “Robustly optimized BERT”

‣ 160GB of data instead of 16 GB

‣ Dynamic masking: standard
BERT uses the same MASK
scheme for every epoch,
RoBERTa recomputes them

‣ New training + more data = better performance

ELECTRA
Clark et al. (2020)

‣ Discriminator to detect replaced tokens rather than a generator
to actually predict what those tokens are

‣ More efficient, strong performance

Using BERT
‣ HuggingFace Transformers: big open-source library with most pre-trained architectures implemented, weights

available

…

‣ Lots of standard models… and “community models”

…

What does BERT learn?

‣ Heads on transformers learn interesting and diverse things: content heads (attend based on content), positional heads (based on position), etc.

Clark et al. (2019)

What does BERT learn?

Clark et al. (2019)

‣ Still way worse than what supervised systems can do, but interesting that this is learned organically

BERT / RoBERTa / DeBERTa
[Devlin et al., 2018 / Liu et al., 2019 / He et al., 2023]

● Encoder-only transformer
● Masked language modeling (MLM), next sentence

prediction
● 110M, 340M parameters

⚘ These models are a good option if you want to solve a text
classification problem for which you have thousands of
labeled datapoints & you know how to train a model (which
you all will know after this course)

⚘ Don’t work for generation as good as decoder-only or
encoder-decoder models

77

[The_] [cat_] [MASK] [on_] [MASK] [mat_]

[*] [*] [sat_] [*] [the_] [*]

Figure by: Lucas Beyer

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=sE7-XhLxHA

2017

Transforme
r

20192018

Pretraining;
Finetuning;

Contextualized
Representations;

BERT;
GPT-2

2022

Instruction
Finetuning;
Generative

AI;
FLAN-T5

2023

RLHF;
ChatGPT;
LLaMA-2

20212020

Prompting;
In-context

learning;
GPT-3

T5

	Tokenization Contd. / Masked LMs
	Logistics
	Last Class Recap: Subword Tokenization
	Byte-Pair-Encoding (BPE) – Token learner�[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]
	Byte-Pair-Encoding (BPE) – Token learner Example
	Byte-Pair-Encoding (BPE) – Token learner Example
	Byte-Pair-Encoding (BPE) – Token learner Example
	Byte-Pair-Encoding (BPE) – Token learner Example
	Byte-Pair-Encoding (BPE) – Token learner Example
	After Training BPE
	Byte-Pair-Encoding (BPE) – Token segmenter�[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]
	Byte-Pair-Encoding (BPE) – Token segmenter�[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]
	BPE Summary
	Unigram LM Tokenizer
	Base Vocabulary
	Unigram LM loss
	Probability of a word
	Unigram Tokenization Algorithm
	Unigram Tokenization Algorithm (Slightly Faster)
	Unigram Tokenization Algorithm (Slightly Faster)
	How to tokenize once the vocabulary is decided
	Unigram vs BPE
	Subword Models -- Summary
	Issues with subword models
	Non-concatenative Languages
	Subword Tokenization and “noise”
	Subword Tokenization and “numbers”
	Slide Number 28
	Sequence Lengths, Costs, and Performance
	Sequence Lengths, Costs, and Performance
	Tokenization
	Slide Number 32
	Masked Language Models
	Reminder: Different senses, but same embedding 👎
	Deep Averaging Network (DAN)
	Reminder: Non-convex optimization, so initialization matters
	Slide Number 38
	Pretrain-then-Finetune (also called post-train)
	Slide Number 40
	LM pretraining
	Masked LMs
	Masked LMs
	Masked Language Modeling (MLM)
	Masked Language Modeling (MLM)
	Masked Language Modeling (MLM)
	Masked LM: Only using Encoder transformer
	BERT
	BERT
	BERT
	BERT
	BERT
	BERT
	BERT
	BERT
	BERT
	Finetuning a MLM-pretrained model
	Finetuning a MLM-pretrained model
	Output layer when finetuning a MLM-pretrained LM
	Finetuning a MLM-pretrained model
	What can BERT do?
	What can BERT do?
	SQuAD
	SQuAD
	QA with BERT
	BERT results, BERT variants
	Evaluation: GLUE
	Results
	Significant improvements from pretraining
	Significant improvements from pretraining
	Significant improvements from pretraining
	RoBERTa
	ELECTRA
	Using BERT
	What does BERT learn?
	What does BERT learn?
	Slide Number 77
	Slide Number 78

