Tokenization Contd. /
Masked LMs

CSE 5525: Foundations of Speech and Natural Language

Processing
https://shocheen.github.io/courses/cse-5525-spring-2025

THE OHIO STATE UNIVERSITY

Logistics

* Hw2 deadline: Monday.

* Final Project: sample project proposals are announced on teams.
Will announce additional instructions for project proposals on
Monday.

Last Class Recap: Subword Tokenization

* “Word"-level: issues with unknown words and information sharing, and gets complex fast

- Also, fits poorly to some languages

* Character-level: long sequences, the model needs to do a lot of heavy lifting in representing
that is encoded in pfain-sight

* Subword tokenization —a middle ground

* Byte Pair Encoding or BPE

Byte-Pair-Encoding (BPE) — Token learner

[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]

Raw train corpus = Vocabulary (a set of tokens)
®* Pre-tokenize the corpusin words & append a special end-of-
word symbol _ to each word
for 1 in range (num_merges) :
pairs = get_stats (vocab)

* Choose 2 tokens that are most frequently adjacent (*A”, *B") best = max(pairs, key=pairs.get)
vocab = merge_vocab (best, vocab)

* Initialize vocabulary with the set of all individual bytes

* Respect word boundaries: Run the algorithm inside words
* Addanew merged symbol ("AB") to the vocabulary

* Change the occurrence of the 2 selected tokens with the new
merged token in the corpus

* Continues doing this until k merges are done

[Jurafsky & Martin (2023)]

https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/P16-1162/
https://aclanthology.org/D19-1141/
https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf

corpus
5 1
2 1
6 n
3 W
2 n

word occurrence
count in the corpus

H-®® O O
= Qs =5 =

e

er\CX‘Of’\NOrd

Byte-Pair-Encoding (BPE) - Token learner Example

gyrmpo!
k vocabulary

., d, e, i, 1, n, o, r, s, t, w

each word is split into characters

[Example from Jurafsky & Martin (2023), pages 18—-19]

https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) - Token learner Example

¢ Counts all pairs of adjacent symbols

¢ The most frequent is the

pair e r [a total of 9 occurrences]

¢ Merge these symbols, treating er as one symbol, & add the new symbol to the vocabulary

corpus

5 l ow _

2 l owle st _
6 newer|_
3 wider)_
2 new_

[Example from Jurafsky & Martin (2023)

vocabulary
—, d, e, 1, 1, n, o, r, s,

, pages 18—

10Q7

=

t, w,

er

https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) - Token learner Example

¢ Counts all pairs of adjacent symbols
¢ The most frequent is the pair er _
¢ Merge these symbols, treating er _ as one symbol, & add the new symbol to the vocabulary

corpus vocabulary \
5 1l owl _ _,d,e,i,l,n,o,r,s,t,w,er,
2 l owle st _

6 newler_

3 wid

2 new._

[Example from Jurafsky & Martin (2023), pages 18—

10Q7

https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) - Token learner Example

¢ Counts all pairs of adjacent symbols

¢ The most frequent is the pair n e

¢ Merge these symbols, treating ne as one symbol, & add the new symbol to the vocabulary

corpu

ne

——

ey

(\SRRVS I @ W \S RNV |

llow _
l*‘owe st _

W er__

wilder_

ne

—

[Example from Jurafsky & Martin (2023), pages 18-19]

W

vocabulary

,d,e,1,1,n,0, 1, s, t,w, er, er,

https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) - Token learner Example

merge current vocabulary

(ne, w) —,d,e,1i,1,n,0, 1, s, t,w, er, er__, ne, new

(1, o) —,d,e,1i,1,n,0, 1, s, t,w, er, er_, ne, new, 1o

(lo, w) —,d,e,i,1,n,0, 1, s, t,w, er, er_, ne, new, 1o, low

(new, er_) _,d,e,i,1,n, 0,1, s, t,w, er, er__ ne, new, lo, low, newer__

(low, _) _,d,e,1,1,n,0, 1, S, t,w, er, er__, ne, new, 1o, low, newer__, low__

Final vocabulary

[Example from Jurafsky & Martin (2023), pages 18-19]

https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf

After Training BPE

* You get a list of ordered merge rules

* Avocabulary: set of all unique tokens in the training corpus.

Byte-Pair-Encoding (BPE) — Token segmenter

[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]

* The token segmenter is used to tokenize a test sentence
o Goal: Apply the merges we've learned from the training data, greedily, in the order we
learned them

* First, we segment each test sentence word into characters

* Then, we apply the first merge rule
- E.g., replace every instance of e r in the test corpus with er

* Then the second merge rule
- E.g., replace every instance of er _in the test corpus with er_

e Andsoon

[Example from Jurafsky & Martin (2023), pages 18-19]

11

https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/P16-1162/
https://aclanthology.org/D19-1141/
https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf

Byte-Pair-Encoding (BPE) — Token segmenter

[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]

* Test example: slow_>slow_—>slow_->slow_

« Test example: now > now

BPE can tokenize a word never seen at training time.

Leads to an open vocabulary model (well, almost)

Can often learn morphological segmentations
Deescalation - De escalat ion

[Example from Jurafsky & Martin (2023), pages 18-19]

12

https://dl.acm.org/doi/10.5555/177910.177914
https://aclanthology.org/P16-1162/
https://aclanthology.org/D19-1141/
https://web.stanford.edu/%7Ejurafsky/slp3/2.pdf

BPE Summary

* A bottom-up tokenizer
 Start with bytes / characters and keep merging until you reach a limit

* A variant: WordPiece which uses longest prefix instead of merge rules to
tokenize.

* Next up, Unigram-LM tokenizer
* Takes a top-down approach

Unigram LM Tokenizer

1. Start with a large base vocabulary, remove tokens until a desired
size is reached.

1. Hovg to construct a base vocabulary: all substrings of pre-tokenized
words

1. How to remove tokens:
a. Compute the unigram LM loss over the corpus (more details later)
b. Removing tokens’increases this loss.
c. Select and remove tokens that increase it the least.
d. Repeat

Base Vocabulary

e The corpus:
(“hug", 10), ("pug", 5), ("pun*, 12), ("bun”, 4), (“hugs", 5)

e Initial Vocabulary (all strict substrings)

("h", 15) ("u", 36) ("g", 20) ("hu", 15) ("ug", 20) ("p", 17) ("pu", 17) ("n", 16)
("un", 16) ("b", 4) ("bu", 4) ("s", 5) ("hug", 15) ("gs", 5) ("ugs", 5)

Unigram LM loss

e Unigram LM loss = negative log probability of the corpus.

o Probability of a corpus = product of marginal probability of
individual words

p(pug hugs bugs) = p(pug) x p(hugs) x p (bugs)

Probability of a word

e product of marginal probability of its subwords (based on frequency)
p(pug) = p("p”) x p(*u”) x p(*g”)
Or, p(pug) = p(*pu”) x p("g”)
Or, p(pug) = p(*p”) x p(*ug”)

Choose highest of all possible splits

e How to this efficiently: Dynamic programming (Viterbi algorithm)

Unigram Tokenization Algorithm

1. Start with a base vocabulary

2. Compute the unigram loss, L, over the corpus

. VERY SLOW!
3. For every token, w, in the vocabulary

a. Remove w from the vocabulary and recompute the loss, L'(w)
b. Define score(w)=L'(w)-L

4. Compute w* = min_w score(w).
a. Remove w* from the vocabulary. o
b. Gotto step 2. Repeat until a desired vocabulary size is reached.

Unigram Tokenization Algorithm (Slightly Faster)

1. Start with a base vocabulary

2. Compute the unigram loss, L, over the corpus

. VERY SLOW!
3. For every token, w, in the vocabulary

a. Remove w from the vocabulary and recompute the loss, L'(w)
b. Define score(w)=L'(w)-L

4.Compute W = x% of tokens with the lowest score.
a. Remove w* from the vocabulary.
b. Gotto step 2. Repeat until a desired vocabulary size is reached.

Unigram Tokenization Algorithm (Slightly Faster)

1. Start with a base vocabulary
1. Compute the unigram loss, L

1. Forevery token, w, in the vocabulary
a. Remove w from the vocabulary and recompute the loss, L'(w)
b. Define score(w)=L'(w)-L

1. Compute W = x% of tokens with the lowest score.
a. Remove W from the vocabulary.
b. Goto step 2.

How to tokenize once the vocabulary is decided

e Tokenization which maximizes the unigram probability of the word

e (orfind top k tokenizations)

e “Unhug” (For each position, the subwords with the best scores ending in that position:)
Character o (u): "u" (score 0.171429)
Character 1 (n): "un" (score 0.076191)
Character 2 (h): "un" "h" (score 0.005442)
Character 3 (u): "un" "hu" (score 0.005442)

Character 4 (g): "un" "hug" (score 0.005442) [final tokenization]

Original: furiously Original: tricycles
(a) BPE: _fur iously (b) BPE: _t|ric |y | cles
Unigram LM: _fur | ious | ly Unigram LM: _tri | cycle | s

Original: Completely preposterous suggestions

U n Ig ra m VS B P E (©) BPE: _Comple | t | ely prep | ost | erous
_Complete | ly

Unigram LM: pre | post | er | ous

_suggest | ions
_suggestion | s

1. Why unigram over BPE and WordPiece?

Unigram finds optimal coding length of a sequence (according to

Shannon’s entropy).
Unigram allows sampling multiple tokenizations for every word —

subword regularization — robustness

a.

b.

1. Why is Unigram tokenization not more popular?
In many papers simply referred to as SentencePiece, which is actually

not a tokenizer but a library wrapping several tokenizers
Does the actual subword tokenizer matter as we scale up models?

a.

b.

Subword Models -- Summary

- Split text in tokens learned statistically from the training
COrpus

- Makes the model open vocabulary

. Subword methods prove to be an effective method of
“compressing text”

Issues with subword models

BERT thinks the sentiment of ~
"superbizarre" is positive because its p(ylsw(z)) = 149
tokenization contains the token "superb" T

BERT

Rk 4 [superb][:##iza][##rre J

----------- Superbizarre) Lneg ssssnnnnan®

applausive pos
/\

(a) BERT (s)

[Hofmann et al., 2021]

https://aclanthology.org/2021.acl-long.279/

Non-concatenative Languages

S ktb “write” (root form)
J kataba “he wrote”
u:f kattaba “he made (someone) write”

LAY
LA
-]

o1 iktataba “he signed up”

Table 1: Non-concatenative morphology in Arabic.*
The root contains only consonants; when conjugat-
ing, vowels, and sometimes consonants, are interleaved
with the root. The root is not separable from its inflec-
tion via any contiguous split.

Subword Tokenization and “noise”

- He fell and broke his coccix (vs coccyx)
- Neighbor =1 token, neighbour =two tokens

- John Smith = 2 tokens, Srinivas Ramanujam =77

Subword Tokenization and “numbers”

- Why are LMs bad at basic arithmetic?

o 3.14 istokenized as 3.14
o 3.15istokenized as 3. 15

Natural phenomena like diacritics or a little easily human-readable noise lead to
unexpected BPE sequences and catastrophic translation failure

Arabic—English

sTC daadll Al sl Ul g dgais Ul

diacritics 1.0 s adal Uly ¢ G U

ref I’m Canadian, and I’'m the youngest of seven kids.

inyis [e | f [s s s b et [6 [T s -] fosd s ff]
Outyis I’'m a Canadian, and I’m the youngest of my seven sisters.

COMET 0.764

Ngext AT TRV S ISR SR NS I ET S ST SURC G N
OUtiext We grew up as a teacher, and we gave me a hug.

COMET -1.387

[Salesky et al., 2021]

https://aclanthology.org/2021.emnlp-main.576/

Sequence Lengths, Costs, and Performance

(N
=
-}

200

—_
=
)

Average number of tokens

2
L
8
]
T

[[
N
[oY4] ()
A

S Qo
S F

Japanese
Devanagari

Language Script

[2305.13707] Do All Lanquages Cost the Same? Tokenization in the Era of Commercial Language Models

https://arxiv.org/abs/2305.13707

Sequence Lengths, Costs, and Performance

—
[\

100

0.8

Average number of tokens

o

= ‘T X = = 3 © c©
& 3 5 3
F 5 & &
o c O
I ©
>
ﬂ.)

B

D,

Language Script

Cost relative to English

—_

S e E s e eI S ¥ IS5 =0 s &

FEES ST e RPLE PRS2 Wy

o USR8 R F 8F

LLM APIs charge per token wE <y - T 2 T o0 " gk
— g o oTwWUEQO S -

— Lu‘- S 5_‘_’

Language Faﬁly and Script

[2305.13707] Do All Lanquages Cost the Same? Tokenization in the Era of Commercial Language Models

https://arxiv.org/abs/2305.13707

Tokenization

Tokenization is at the heart of much weirdness of LLMs. Do not brush it off.

» Why can't LLM spell words? Tokenization.

» Why can't LLM do super simple string processing tasks like reversing a string? Tokenization.

« Why is LLM worse at non-English languages (e.g. Japanese)? Tokenization.

e Why is LLM bad at simple arithmetic? Tokenization.

» Why did GPT-2 have more than necessary trouble coding in Python? Tokenization.
» Why did my LLM abruptly halt when it sees the string "<|endoftext|>"? Tokenization.
» What is this weird warning | get about a "trailing whitespace"? Tokenization.

» Why the LLM break if | ask it about "SolidGoldMagikarp"? Tokenization.

» Why should | prefer to use YAML over JSON with LLMs? Tokenization.

e Why is LLM not actually end-to-end language modeling? Tokenization.

e What is the real root of suffering? Tokenization.

[Let's build the GPT Tokenizer’ by Andrej Karpathy]

31

https://youtu.be/zduSFxRajkE?feature=shared

A= Prithviraj (Raj) Ammanabrolu @ u- Se
If there's one thing standing in the way of AGl, it's tokenlzers

J

DAYS WITHOUT
ACCIDENTS

N

lmglr plcom

32

Masked Language Models

Reminder: Different senses, but same
embedding ¢/

e The Amazon Basin is home to the largest rainforest on Earth.
e She filled the basin with water to wash the dishes.
® The neurosurgeon examined the cranial basin for signs of trauma.

word2vec, GloVe, or other static embeddings assign exactly the same embedding to each of these
occurrences of the word “basin” despite their different senses

Our next goal:
Assign different, contextualized embeddings based on the surrounding context

The final transformer encoder representation of each token is highly contextualized

35

Reminder: Token order & long-range

dependencies with DAN ¢/

Transformer considers token order with
positional embeddings

Due to multi-headed self-attention & cross-

attention, we are able to model long-range
dependencies

[Iyyer et al., 2015]

Deep Averaging Network (DAN)

DAN

softmax
D:\&I:’h& = f(W2-h1 +b2)
[T LT T Jh=fWiav+hb)

4
av =), ¢
i=1

HEEENIEEEEN I EEEENIEEEEE

Predator is a

masterpiece
€ €2 €3 Cq

36

https://aclanthology.org/P15-1162/

Reminder: Non-convex optimization, so
initialization matters

Instead of starting from randomly initialized weights, we are going to make use of large

corpora to pretrain a model and find weights that are a much better starting point for
all NLP tasks than random weights

We are going to talk about this next!

Local minimum Saddle point

Randomly initialized transformer still has
this issue

Value of weight Value of weight

37

Source: https://www.ibm.com/topics/gradient-descent

https://www.ibm.com/topics/gradient-descent

Standard

Supervised
Deep
Learning
(not)
spam
— OO0 OO
=~ o RRA AR
o 90 00 XA RK I
— + CRESR OA SRS TN
=1 = OB CENEIART

text + labels neural network starting
from random weights ®

38

Pretrain-then-Finetune (also called post-train)

Stage 1: ==
Pretrain a mode/ \1\\ %
\
text

Stage 2:

Finetune the model
text + labels

next word

neural network

starting from

X/ I v..k

AL IS KD P
(BRI

SOROOA
."\\\‘1/;2\9/;“‘\\.// random
O~ weights

partial input
Objective: generate next or masked word
(does not require that people label the next word)

'/,.\\\’z/’\\\’l/’\\ neural network
XARAREOSO tarting f
ORI starting from
SOROROA0 pretrained
CIPHRY .
50 weights

Objective: standard supervised training
39

Supervised —p/
Unsupervised

arxiv.org/pdf/2502.03038

https://arxiv.org/pdf/2502.03038

LM pretraining

- LMs so far: predict the next token given the previous tokens
also sometimes called "Causal Language Modeling”.

- This enables a self-supervised task — train on only raw text
(similar to word2vec).

- And get really interesting and useful representations.
o With many usecases

41

Masked LMs

* LMs so far: predict the next token given the previous tokens

* Since we have a complete sentence?
- So: can we incorporate future context to learn better representations

* How can we formulate a self-supervised prediction task?

N B

Masked LMs

Virtual Assistant

T !

Masked Language Modeling Causal Language Modeling

rrorod I rroro I

| am a MASK Assistant | am a Virtual MASK

4
Image from https://www.hoﬁsticai.com/blog/from-transformer-architecture-to-prompt-engineering

Masked Language Modeling (MLM)

(text) Sylvester Stallone has made some terrible films in his lifetime, but this has got to be one of the
worst. A totally dull story...

(masked text) Sylvester Stallone has made some <mask> films in his lifetime, but this has got to be one of the
<mask>. A totally <mask> story...

Lector(films) vector(in) vector(his) ... vector(the)

(output final layer) vector(Sylvester) ... vector(<mask>)
vector(<mask>) ... vector(<mask>) vector(story)...

Masked Language Modeling (MLM)

(text) Sylvester Stallone has made some terrible films in his lifetime, but this has got to be one of the
worst. A totally dull story...

(masked text) Sylvester Stallone has made some <mask> films in his lifetime, but this has got to be one of the
<mask>. A totally <mask> story...

Lector(films) vector(in) vector(his) ... vector(the)

(output final layer) vector(Sylvester) ... vector(<mask>)
vector(<mask>) ... vector(<mask>) vector(story)...

loss(predicted_word, “terrible”)

Masked Language Modeling (MLM)

(text) Sylvester Stallone has made some terrible films in his lifetime, but this has got to be one of the
worst. A totally dull story...

(masked text) Sylvester Stallone has made some <mask> films in his lifetime, but this has got to be one of the
<mask>. A totally <mask> story...

Lector(films) vector(in) vector(his) ... vector(the)

(output _final layer) vector(Svlvester) ... vector(<mask>)
vector(<mask>) | .. |vector(<mask>) Pector(story)...

average these losses and do

loss(predicted_word, “dull”) _
a gradient descent step

loss(predicted_word, “worst”) loss(predicted_word, “terrible”)

Masked LM: Only using Encoder transformer

* Encoders assume we have the complete sequence

* Self-attention computes weighted sum over entire context (i.e.,
entire sequence)

* There is no generation problem, we just want representations
- We will learn how to use them later on

BERT

Bidirectional Encoder Representations from Transformers
* Encoder transformer

* BERT Base: 12 transformer blocks, 768-dim word-piece tokens,
12 self-attention heads — 110M parameters

* BERT Large: 24 transformer blocks, 1024-dim word-piece tokens,
16 self-attention heads — 340M parameters

* 100’s of variants since BERT came out.

48
[Devlin et al. 2018]

BERT

Inputs

* One ortwo sentences

- Word-piece token embeddings

- Position and segment embeddings

Input ctsl | | my || dog is ‘ cute || [SEP] he | likes H play ’ ##ing | [SEP]

Token

Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe Elikes Eplay E##ing E[SEP]
= = = L - = L] = L] L =

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
= = L] L = = L] = L] L =

Position

Embeddings EO El Ez E3 E4 ES E6 E7 E8 E9 E10

[figure from Devlin et al. 2018]

49

BERT

Training
* Data: raw text
* Two objectives:

- Masked LM
- Next-sentence prediction

* Later development in "RoBERTa":
- More data, no next-sentence prediction, dynamic masking

50

BERT

Masking Recipe for Training

* Randomly mask and predict 15% of the tokens

* For 80% (of these 15%) replace the input token with a special token
[MASK]

* For 10% replace with a random token from the vocabulary

* For 10% keep the same (input and output are the same, trivial task)

51

BERT

Next-sentence Prediction

* Input: [CLS] Text chunk 1 [SEP] Text chunk 2

* Training data: 5o0% of the time, take the true next chunk of text,
50% of the time take a random other chunk

* Predict whether the next chunk is the true next chunk
* Prediction is done on the [CLS] output representation

BERT

Related Techniques

Central Word Prediction Objective
(context2vec) [Melamud et al. 2016]

Machine Translation Objective (CoVe)
[McMann et al. 2017]

Bi-directional Language Modeling
Objective (ELMo) [Peters et al. 2018]

Then BERT came....

... and many more followed (the
whole sesame street arrived)

53

https://www.aclweb.org/anthology/K16-1006
https://arxiv.org/abs/1708.00107
https://arxiv.org/abs/1802.05365

BERT

What Do We Get?
* We can feed complete sentences to BERT

* For each token, we get a contextualized representation
- Meaning: computed taking the other tokens in the sentence into acocunt

* In contrast to word2vec representations that fixed and do not
depend on context

* While word2vec vectors are forced to mix multiple senses, BERT
can provide more instance-specific vectors

54

BERT

How Do We Use It?
* Widely supported by existing frameworks
- E.g., Transformers library by Hugging Face

* We will soon see how to use it when working with annotated
data

* Large BERT models quickly outperformed human performance
on several NLP tasks

- But what it meant beyond benchmarking was less clear

* Started an arms race towards bigger and bigger models, which
quickly led to the LLMs of today

55

BERT

What It Is Not Great For?
* primarily used for discriminative tasks, Cannot generate text

* Can manipulate in weird ways to generate text but not the original
purpose of this model

56

Finetuning a MLM-pretrained model

Model
Outputs
DistiBERT
—
o

(\I’mdil 101 1037 17453 14726 19379 12758 2006 2293 102
nput

[CLS] a visually stunning rum ##ination on love [SEP]

Figure: Jay Alammar

https://jalammar.github.io/illustrated-transformer/

Finetuning a MLM-pretrained model

Figure: Jay Alammar

15% | 0 (nega

ve

85% 1 (positive)

Logistic Regression

Model #2
O learn
Model #2 Input
Model #1 Output
Model #1
Model #1 Input 101
[CLS]

1037

a

Model #2 Output

17453

visually

1

(positive)

DistiBERT

—
..

~——

14726 18379 12758 2006 2293

stunning rum ##ination on love

102

[SEP]

https://jalammar.github.io/illustrated-transformer/

Output layer when finetuning a MLM-pretrained LM

15% | 0 (negative) Model #2 Output

1

85% | 1 (positive) (positive)

Logistic Regression
Model #2
O learn

The values in this matrix must be learned for each
new task from scratch during the finetuning stage

(e

Model #2 Input
Model #1 Output

i-th dimension ~

w7 the “probability” of the i-
< = +" softmax i, japel

the logits vector

predict the highest “probability” label

vector(input sentence)

output matrix 59
Figure: A Visual Guide to Using BERT for the First Time by Jay Alammar

https://jalammar.github.io/a-visual-guide-to-using-bert-for-the-first-time/

Finetuning a MLM-pretrained model

¢ Addaspecial [CLS] token to the beginning of the
sequence & [SEP] at the end of it

. 101 1837 17453 14726 19379 12758 2006 2293 102
¢ Use the d-dimensional vector representation of the : —
[CLS] token from the final layer to represent the | ——
ent|re Sequence ‘Tg‘kenizaﬁo'n [CLS] a visually stunning rljm ##ination on love [SEP]
o Reminder: This makes sense because of the self- Ehrainbil
attent'on : a visually stunning rum ##ination on love

¢ Replace the pretrained output layer with a new
output layer that has a new randomly initialized
output weight matrix of thesized x n_labels

¢ Multiply itwiththed x n_labels output matrix [
= softmax = argmax = predicted label

¢ Cross entropy / NLL loss using the human-
annotated labels

1 1) Break words into tokens

| Tokenize

*a visually stunning rumination on love”

Figure: Jay Alammar

https://jalammar.github.io/illustrated-transformer/

What can BERT do?

Label

= 2

e =] -
BERT

E[CLS] E1 E

Label O B-PER 0
5
M . ST e
BERT BERT
Eas || E | E, ‘ Eer || Er ‘ | E, Eoe | E E, E,
— -0—{—F -

EN
(b) Single Sentence Classification Tasks:
SST-2, CoLA

2
L
[CLS] Tok 1 Tok 2
|

Single Sentence

()])= - ()
_'_l _'_/

Sentence 1 Sentence 2

(@) Sentence Pair Classification Tasks:
MNLI, QQP, QNLI, STS-B, MRPC,
RTE, SWAG

Artificial [CLS] token is used as the vector to do classification from

Sentence pair tasks (entailment): feed both sentences into BERT

BERT can also do tagging by predicting tags at each word piece

I L . LI
([CLS]W Tok 1 Tok 2

|

Single Sentence

(d) Single Sentence Tagging Tasks:
CoNLL-2003 NER

Devlin et al. (2019)

What can BERT do?

Label

Entails (first sentence implies second is true) —
M

Transformer
BERT
Transformer Ees | B |~ | B || B || B | | B

15 N S N S

—
[CLS] A boy plays in the snow [SEP] A boy is outside (o)) .. () (e | [0] . [T

N

L'_I

Sentence 1 Sentence 2

How does BERT model sentence pairs?

Transformers can capture interactions between the two sentences, even though the NSP (a) Sentence Pair Classification Tasks:
objective doesn't really cause this to happen MNLI, QQP, QNLI, STS-B, MRPC,

RTE, SWAG

SQUAD

Q: What was Marie Curie the first female recipient of?
Passage: One of the most famous people born in Warsaw was Marie Sktodowska-

Curie, who achieved international recognition for her research on radioactivity and
was the first female recipient of the Nobel Prize. Famous musicians include Wtadystaw
Szpilman and Frédéric Chopin. Though Chopin was born in the village of Zelazowa
Wola, about 60 km (37 mi) from Warsaw, he moved to the city with his family when he
was seven months old. Casimir Pulaski, a Polish general and hero of the American

Revolutionary War, was born here in 1745.
Answer = Nobel Prize

Assume we know a passage that contains the answer. More recent work has
shown how to retrieve these effectively (will discuss when we get to QA)

SQUAD

Q: What was Marie Curie the first female recipient of?

Passage: One of the most famous people born in Warsaw was Marie Sktodowska-
Curie, who achieved international recognition for her research on radioactivity and

was the first female recipient of the Nobel Prize. ...

Predict answer as a pair of (start, end) indices given question g and passage p;
compute a score for each word and softmax those

041 0410401 0485 041

P(start | q, p) = recipient of the Nobel Prize .

P(end | g, p) = same computation but different params

QA with BERT

Start/End Span

)] e -
E[CLS] E1 EN E[SEF’] E1, EM,
fr LI g I s I e iy
()] Ce)(=](r)- [
Question Paragraph

What was Marie Curie the first female recipient of ? [SEP] One of the most famous people born in Warsaw was Marie ...

Devlin et al. (2019)

BERT results, BERT variants

Evaluation: GLUE

Corpus |Train| |Test| Task Metrics Domain
Single-Sentence Tasks
CoLA 8.5k 1k acceptability Matthews corr. misc.
SST-2 67k 1.8k sentiment acc. movie reviews
Similarity and Paraphrase Tasks
MRPC 3.7k 1.7k paraphrase acc./F1 news
STS-B 7k 1.4k sentence similarity Pearson/Spearman corr. misc.
QQP 364k 391k paraphrase acc./F1 social QA questions
Inference Tasks
MNLI 393k 20k NLI matched acc./mismatched acc. misc.
QNLI 105k 54k QA/NLI acc. Wikipedia
RTE 2.5k 3k NLI acc. news, Wikipedia
WNLI 634 146 coreference/NLI acc. fiction,books

Results

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE | Average
392k 363k 108k 67k 85k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 823 932 350 810 860 61.7| 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 799 904 36.0 733 849 568 71.0
OpenAl GPT 82.1/81.4 70.3 88.1 91.3 454 80.0 823 56.0| 752
BERTgASE 84.6/83.4 71.2 90.1 935 521 858 889 664| 79.6
BERT ARGE 86.7/85.9 721 911 949 605 865 893 70.1| 819

Huge improvements over prior work

Effective at “sentence pair” tasks: textual entailment (does sentence A imply sentence B), paraphrase

detection

Devlin et al. (2018)

Significant improvements from pretraining

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARrGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.® BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

Source: Devlin et al., 2018 (BERT)

69

https://arxiv.org/abs/1810.04805

Significant improvements from
pretraining

System Dev Test
EM F1 EM Fl

Top Leaderboard Systems (Dec 10th, 2018)

Human 86.3 89.0 86.9 89.5
#1 Single - MIR-MRC (F-Net) - - 748 78.0
#2 Single - nlnet - - 742 771
Published
unet (Ensemble) - - 714 749
SLQA+ (Single) - 71.4 744
Ours
BERTLArGE (Single) 78.7 819 80.0 83.1

Table 3: SQuAD 2.0 results. We exclude entries that
use BERT as one of their components.

Source: Devlin et al., 2018 (BERT)

https://arxiv.org/abs/1810.04805

Significant improvements from
pretraining

System Dev Test
ESIM+GloVe 51.9 52.7
ESIM+ELMo 59.1 59.2
OpenAl GPT - 78.0
BERTgAsE 81.6 -

BERTL ARGE 86.6 86.3
Human (expert)T - 850
Human (5 annotations)’ - 88.0

Table 4: SWAG Dev and Test accuracies. THuman per-
formance is measured with 100 samples, as reported in
the SWAG paper.

Source: Devlin et al., 2018 (BERT)

https://arxiv.org/abs/1810.04805

RoBERTa

“Robustly optimized BERT”
SQuAD

1.1/2.0) MNLI-m SST-2

Model data bsz steps

RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6
+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4

160GB of data instead of 16 GB

Dynamic masking: standard BERT srz
BERT uses the same MASK with BOOKs + WIKI ~ 13GB 256 1M 90.9/81.8 866 937

scheme for every epoch,
RoBERTa recomputes them

New training + more data = better performance

Liu etal. (2019)

ELECTRA

the —> [MASK] —>
chef — chef —>
cooked —> [MASK] —>
the — the —>
meal — meal —>

sample
--> the —> —> original
chef —>{ . . . —> original
Gten_erzl:lltor > ate —> Discriminator |5 replaced
s(m)gI)IICIS/I I_yw?) (ELECTRA) -
the — —> original
meal —> —> original
901 XLNet 200k steps 300k steps_ _ 400k steps _ |

Discriminator to detect replaced tokens rather than a generator
to actually predict what those tokens are

More efficient, strong performance

GLUE Score

Clark et al. (2020)

RA-Large
100k steps

RoBERTa
100k steps

85
80
75 4 @ BERT-Small
®ELMo
70
oGloVe m—a Replaced Token Detection Pre-training
e—e Masked Language Model Pre-training
T T T T T T T T T
0 1 2 3 4 5 6 7 8
Pre-train FLOPs 1le20

sing BERT

HuggingFace Transformers: big open-source library with most pre-trained architectures implemented, weights
available
Lots of standard models... and “community models”

Model architectures
mrm8488/spanbert-large-finetuned-tacred
@ Transformers currently provides the following NLU/NLG architectures:

mrm8488/x1lm-multi-finetuned-xquadvl
1. BERT (from Google) released with the paper BERT: Pre-training of Deeg

Understanding by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Krist e R L

2. GPT (from OpenAl) released with the paper Improving Language Under

Radford, Karthik Narasimhan, Tim Salimans and llya Sutskever. B B A e L e s n Ban e Rt

3. GPT-2 (from OpenAl) released with the paper Language Models are Un

* i 1 1 k¥
Jeffrey Wu* Rewon Child, David Luan, Dario Amodei** and llya Sutskewv: e

4. Transformer-XL (from Google/CMU) released with the paper Transforn
Fixed-Length Context by Zihang Dai* Zhilin Yang* Yiming Yang, Jaime |
5. XLNet (from Google/CMU) released with the paper XLNet: Generalized
Understanding by Zhilin Yang* Zihang Dai* Yiming Yang, Jaime Carbon

redewiedergabe/bert-base-historical-german-rw-cased

roberta-base
6. XLM (from Facebook) released together with the paper Cross-lingual Li

and Alexis Conneau. severinsimmler/literary-german-bert

7. RoBERTa (from Facebook), released together with the paper a Robustly

seyonec/ChemBERTa-zinc=base-vl

What does BERT learn?

Head 1-1
Attends broadly

Head 3-1
Attends to next token

Head 8-7
Attends to [SEP]

found
in
taiwan

\ found
in, /in in in in
taiwan . ,taiwan taiwan s taiwan taiwan
[SEP]- [SEP]

the - K the the \ the the
wingspan - o »wingspan wingspan\wingspan wingspan
: N is is \ is is
24 "Heads n tr:ansf;xmers !é;ﬂ']terestmg and diverse things: content hgé(w gﬁional heads (based on position), etc. 24
28 28 28 s 28
mm/ ‘mm mm \ mm
[SEP] [SEP]A[SEP]

found, ,found found

IS IS

24

\ 28
mm</) \ mm

[SEPj'

Head 11-6
Attends to periods

found found

in in
taiwan taiwan
[SEP] [SEP]
the the

wingspan
is

24

28

mm

wingspan
is
24

[SERL o

What does BERT learn?

Head 8-10

- Direct objects attend to their verbs

- 86.8% accuracy at the dobj relation

Head 8-11

- Noun modifiers (e.g., determiners) attend
to their noun

- 94.3% accuracy at the det relation

[CLS] [CLS] [CLS] [CLS]
It It It It [CLS]\ [CLS]
goes -goes declined declined [CLS] [CLS] They The
on on to to The The 45-year-old\ 45-year-olc
to to discuss< discuss complicated; complicated Gfgrrgr: f(;);?eergl
plug; plug its its Ianguaz_::ﬁ\‘ :inguage Electric Electric
a'\‘ 2 plans plans the . the execut(i:voé \ E)(()écutive
few () fgt\ﬁYwayworse than what superti(s)eﬁsyst s can Iggut interesting that this is Iearrneggr%an huge figures, figures
diversified(| diversified upgrading\ -upgrading nNew - new it it
Fidelity /\| Fidelity its \ 1 its Laa‘“; favl will will
funds! funds current:- current muddied. muddied _be ¥ be _
by by product< \\\\ “product the the easiers easier
) 4 \
name name line< "0\ line fight fight .thls \ t.h's
time \—time
[SEP] (SEP] [SEP] [SEP] [SEP]

Head 5-4

- Coreferent mentions attend to their antecedents

- 65.1% accuracy at linking the head of a
coreferent mention to the head of an antecedent

with with

Kim Kim joining joining
today today peace peace
as as talks talks
she she between -\ between
got got Israel \ Israel
some some and and
expert expert the X the
opinions opinions Palestinians Palestinians
on on . .
the the The The
damage damage negotiations negotiations
to to are are
her her
home home

Clark et al. (2019)

BERT / RoBERTa / DeBERTa e et) tmed o

[Devlin et al., 2018 / Liu et al., 2019 / He et al., 2023]

e Encoder-only transformer
e Masked language modeling (MLM), rextsentence

prediction N

e 110M, 340M parameters

[Add & Norm]

Multi-Head
Attention

~——

Positional &
Encoding

¢ These models are a good option if you want to solve a text]
classification problem for which you have thousands of I
labeled datapoints & you know how to train a model (which
you all will know after this course) he | leat | BASK] [on | [MASK] (mat]

¢ Don't work for generation as good as decoder-only or .))
encoder-decoder models

Inputs

Figure by: Lucas Beyer 7

https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1907.11692
https://openreview.net/forum?id=sE7-XhLxHA

Transforme RLHF;
r T5 ChatGPT;

LLaMA-2

Instruction

Pretraining; Prompting; - -
Finetuning; In-context FGIZﬁteL:-:It?\?é
Contextualized learning; AT:
Representations; GPT-3 !
BERT; FLAN-T5

GPT-2

	Tokenization Contd. / Masked LMs
	Logistics
	Last Class Recap: Subword Tokenization
	Byte-Pair-Encoding (BPE) – Token learner�[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]
	Byte-Pair-Encoding (BPE) – Token learner Example
	Byte-Pair-Encoding (BPE) – Token learner Example
	Byte-Pair-Encoding (BPE) – Token learner Example
	Byte-Pair-Encoding (BPE) – Token learner Example
	Byte-Pair-Encoding (BPE) – Token learner Example
	After Training BPE
	Byte-Pair-Encoding (BPE) – Token segmenter�[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]
	Byte-Pair-Encoding (BPE) – Token segmenter�[coined by Gage et al., 1994; adapted to the task of word segmentation by Sennrich et al., 2016; see Gallé (2019) for more]
	BPE Summary
	Unigram LM Tokenizer
	Base Vocabulary
	Unigram LM loss
	Probability of a word
	Unigram Tokenization Algorithm
	Unigram Tokenization Algorithm (Slightly Faster)
	Unigram Tokenization Algorithm (Slightly Faster)
	How to tokenize once the vocabulary is decided
	Unigram vs BPE
	Subword Models -- Summary
	Issues with subword models
	Non-concatenative Languages
	Subword Tokenization and “noise”
	Subword Tokenization and “numbers”
	Slide Number 28
	Sequence Lengths, Costs, and Performance
	Sequence Lengths, Costs, and Performance
	Tokenization
	Slide Number 32
	Masked Language Models
	Reminder: Different senses, but same embedding 👎
	Deep Averaging Network (DAN)
	Reminder: Non-convex optimization, so initialization matters

	Slide Number 38
	Pretrain-then-Finetune (also called post-train)
	Slide Number 40
	LM pretraining
	Masked LMs
	Masked LMs
	Masked Language Modeling (MLM)
	Masked Language Modeling (MLM)
	Masked Language Modeling (MLM)
	Masked LM: Only using Encoder transformer
	BERT
	BERT
	BERT
	BERT
	BERT
	BERT
	BERT
	BERT
	BERT
	Finetuning a MLM-pretrained model
	Finetuning a MLM-pretrained model
	Output layer when finetuning a MLM-pretrained LM
	Finetuning a MLM-pretrained model
	What can BERT do?
	What can BERT do?
	SQuAD
	SQuAD
	QA with BERT
	BERT results, BERT variants
	Evaluation: GLUE
	Results
	Significant improvements from pretraining
	Significant improvements from pretraining
	Significant improvements from pretraining
	RoBERTa
	ELECTRA
	Using BERT
	What does BERT learn?
	What does BERT learn?
	Slide Number 77
	Slide Number 78

